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End-to-End Scene Text Recognition based on
Artificial Neural Networks

Markus Völk

Abstract

The extraction of textual information from natural image data or simple scene text
recognition is a challenging task with various applications. The difficulty of this
task is caused by perspective distortions, environment disturbances and often poor
image quality, making it an active research area that recently enjoyed rapid progress
due to the use of Artificial Neural Networks (ANNs).
The goal of his work is to develop an end-to-end scene text recognition system that
surpasses the current state-of-the-art in terms of accuracy and cost efficiency.
Therefore, an efficient two-stage end-to-end scene text recognition system, based on
Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs)
is presented. The proposed system significantly outperforms prior approaches (in-
creased f-measure by 8.3 percent points) while simultaneously reducing the model
size of both, detection and recognition stage (47% less model parameters in the
detection and 9% less in the recognition model). It also shows good real-time ca-
pabilities (~21.8 fps on detection and ~13.1 fps on end-to-end recognition). Both
models can be trained from scratch in less than two days on a commercially available
consumer-grade GPU. The improved performance is mainly the result of concepts
such as Dense Blocks, Gated Recurrent Unit (GRU) and Focal Loss. The whole
recognition pipeline was developed in Python with Keras and TensorFlow and its
source code is freely available under MIT license.
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Chapter 1

Introduction

In the field of machine learning, the availability of large, labeled datasets and af-
fordable GPUs for efficient parallel computing has led to great advances in the last
few years. In particular, the application of Artificial Neural Networks (ANNs) to
practically all conceivable problems in Computer Vision produced impressive results.
One specific application of ANN is text recognition. While the problem of recog-
nizing text in a constrained environment like scanned documents can be considered
as solved these days, the recognition of text in unconstrained environments like city
landscapes, grocery stores or at workplaces is still an insufficiently solved and chal-
lenging problem. Due to an increasing number of use cases for scene text recognition
systems, scene text recognition or text spotting in the wild has become subject to
active research that has recently seen great progress.
Scene text recognition systems can provide valuable textual information for a wide
range of application scenarios. Most of them are intended for augmented reality so-
lutions on mobile devices, such as automatic real-time translation, user navigation,
driving assistance, human-computer interaction or aid tools for visually impaired
people. Other application scenarios involve scene understanding for navigation and
task planing in self-driving cars and autonomous robot systems. Scene text recog-
nition can be used to extract structured information from large sets of image data.
Street-view-like images may be exploited for map services and geographic informa-
tion systems and web images for image understanding and visual search engines.
And as always for AI applications, there are surveillance scenarios, such as license
plate recognition for criminal investigation.
However, scene text recognition is challenging for various reasons. Scene text in-
stances show a high variability in scale, aspect ratio, font, language and style. They
may also be arbitrarily oriented, partially occluded, perspectively distorted, exhibit
curvature or interfere with the background. In addition to the difficult environ-
mental conditions, the image quality is often quite poor. The images may have
low resolution, contrast or saturation and may also suffer from reflections, from
non-uniform illumination, blur, noise or compression artifacts. All those facts make
scene text reading a problem that is not easy to solve.
The goal of this work is to provide an overview of recent approaches related to scene
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1. Introduction

text reading and to develop an end-to-end scene text reading system that hopefully
surpasses the prior art approaches.
Thus, the main contribution of this work is twofold. First, this works provides an
overview of recent concepts and ideas related to generic CNN-based object detection,
scene text detection and recognition as well as approaches to end-to-end trainable
scene text recognition. And second, an end-to-end scene text recognition pipeline is
proposed that is composed of a detection and a recognition stage and significantly
outperforms prior approaches in terms of accuracy while simultaneously considerably
reducing the model size. The new detection model is 47% smaller than in the prior
approach and can be trained from scratch, instead of relying on features obtained by
pre-training a model for image classification. The new recognition model requires
9% less memory compared to a prior approach without sacrificing performance. The
whole pipeline also shows good real-time performance, ~21.8 fps on the detection
task and ~13.1 fps on the end-to-end recognition task.
The rest of this thesis is structured as follows. In Chapter 2 a theoretical founda-
tion to ANNs is provided and several concepts, relevant for the following chapters,
are introduced. Chapter 3 considers recent approaches and ideas related to general
CNN-based object detection, which are often taken as the foundation for various text
detection approaches. Next, in Chapter 4, state-of-the-art approaches to scene text
detection and recognition are investigated and relevant ideas are collected. Chap-
ter 5 describes the implementation of an end-to-end scene text recognition system
and justifies the related design decisions. In the experiments Chapter 6, several
models based on the implementation in Chapter 5 are trained and evaluated with
regard to performance, speed, complexity and generalization. Qualitative results are
discussed. The work ends with a final discussion and an outlook on further research
in Chapter 7.
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Chapter 2

Artificial Neural Networks

Humans and animals process information with neural networks, formed by trillions
of nerve cells (neurons), which are connected via synapses to exchange electrical
signals, the so-called action potential. Computer algorithms that mimic this bio-
logical structures are called Artificial Neural Network (ANN). Their development
is primary driven by the desire to understand how the human brain works and
the demand for computer systems that can deal with abstract and poorly defined
problems, making them an active field of research.
ANNs or short networks in our context, have a long history dating back to the
1940’s (McCulloch and Pitts 1990) when the ideas of cybernetics came up. Later in
the 1950’s and 60’s people started to build learning machines based on the Hebbian
theory1 and by means of analog computers and vacuum tubes. This was also the
time when the Perceptron (Rosenblatt 1958), a single-layer predecessor of today’s
networks, was invented. Later, the research on ANNs stagnated after Marvin Min-
sky, founder of the MIT AI Lab, and Seymour Papert, director of the lab, published
their book (Minsky and Papert 1969) in which they expounded two main issues
facing the perceptron model. First, the basic perceptrons are incapable of learning
the XOR circuit, and second, they could not be easily extended to a multi-layer net-
work due to the required amount of computation. The following period of reduced
funding and interest in AI research is known as the first of several AI winters (Smith
et al. 2006). In the 1980’s the focus of the community was more on expert systems
and later in the 1990’s and 2000’s, SVMs were the way to go. The true success
story of ANNs began in the 2010’s with the availability cheep computation power,
large datasets and applications in computer vision and natural language processing.
Today AI is practically defined by ANNs.
Before this chapter presents a theoretical foundation for neural networks, some text-
books may be recommended to the ambitious reader. Goodfellow et al. 2016 is freely
available online and probably the most complete reference related to deep learning,
Bishop 2006 is about machine learning in a more general way, and last but not least,
Murphy 2012 provides a completely probabilistic approach to machine learning.
The rest of this chapter is now structured as follows. Section 2.1 introduces the

1The Hebbian rule in its shortest form says "Cells that fire together wire together."
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2. Artificial Neural Networks

basic framework of ANNs. Section 2.2 considers the training process and various
related techniques in more detail. Section 2.3 addresses common feed forward layers
and provides a mathematical description of them, followed by Section 2.4 where the
same is done for recurrent layers. Section 2.5 considers various task dependent loss
functions required to train ANNs. Section 2.6 is about neural network architectures
and the final Section 2.9 gives an overview of open source software for implementing
them.

2.1 Basic Framework

On a cellular level, a neuron receives input signals on its synapses, performs some
internal pattern matching and produces an input dependent output signal, which
is then transmitted over its axon to other neurons. The most popular approach to
mathematically model this behavior is to do a linear combination

∑
iwixi of the

input signals xi, add some bias term b and throw it through a nonlinear activation
function for thresholding. The analogy between the biological neuron and the math-
ematical model is depicted in Fig. 2.1. The process of finding suitable parameters
(weights wi and bias b) that enable the neuron to produce a desired output is called
training or learning.

Fig. 2.1: Drawing of a biological neuron (left) and its mathematical model (right)2.

Considering the topological structure of ANNs, one can distinguish between Feed-
Forward Neural Networks and Recurrent Neural Networks. In FFNNs the signals
can only flow in one direction, from input to output, whereas RNNs contain internal
feedback connections allowing the signals to flow in both directions.
Most ANNs that are used today, are organized in a layer-wise fashion, similar to the
FFNN in Figure 2.2. They contain an input layer, one or more hidden layers and
an output layer. Each layer, except of the input layer, contains a certain number ob
units (neurons) with nonlinear activation functions. In other words, the input layer
is passive and does not modify the signals. Further one may distinguish networks
between Shallow and Deep Neural Networks (DNNs), where ’shallow’ is a term used

2Source CS231n Convolutional Neural Networks for Visual Recognition 2017
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x1Input 1

x2Input 2

x3Input 3
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y1 Output 1

y2 Output 2

Hidden
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Input
layer

Output
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Fig. 2.2: Feed-Forward Neural Network with two hidden layers; subscript indicates
the unit index in the layer, superscript the index of a hidden layer.

for networks with one or just a few hidden layers and ’deep’ in contrast is used to
refer on networks with many layers. Deep in this sense is also the term that gives
its name to the Deep Learning (DL) paradigm that can be witnessed today.
In nearly all current applications of ANNs, ANNs are used as function approximators
and the training is done in a supervised learning setup. Supervised learning is the
case, in which only a limited set of N labeled samples (Xn, Yn)Nn=1 is available for
training3. The relation between the observation Xn and the label Yn is then defined
by the unknown target function f , which we want to approximate.

Yn := f(Xn) (2.1)

Finding an approximator f̂ with correct behavior is usually an ill-posed problem
with many solutions where each solution may perform different on samples that are
not contained in the training set.
To tackle the search for a good approximator, one may utilize a parametric function
f̂θ, where θ are the free parameters controlling the behavior of f̂θ. If f̂θ represents
an ANN that maps the network input x ∈ RD to the network output ŷ ∈ RC ,
then the trainable parameters of the network, in particular the weights and biases
of all the units, are the parameters θ. If we further assume that f̂θ is differentiable
with respect to θ and introduce an also differentiable error measure, the so called
Loss function L(Y, f̂θ(X)), which compares the approximation with the label, then
the training of the network can be treated as an in general highly nonlinear and
nonconvex optimization problem that can be solved by Gradient Descent (GD).
Expressing the gradient ∂L

∂θ
in an analytic form is, especially for DNNs, a practically

infeasible undertaking. Therefore, a more efficient concept called backpropagation
(Rumelhart et al. 1986) was developed. It is basically a divide and conquer strategy
for a progressive computation of the gradient. To understand this idea, it is helpful

3Unsupervised learning in contrast is the case when no labels are available and the system has
to learn the underlying pattern from the data alone.
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f(x)

x1

x2

y1 df

∂L
∂x1

= ∂L
∂y1

∂y1
∂x1

∂L
∂x2

= ∂L
∂y1

∂y1
∂x2

∂L
∂y1

Forwardpass Backwardpass

Fig. 2.3: The chain rule applied to one single unit.

to interpret a network an acyclic computation graph. By applying the chain rule
on each node of the graph, the gradients with respect to the signals entering the
node can be expressed by the gradients with respect to the signals leaving the
node and the gradient of the unit itself (Figure 2.3). By recursively computing
and caching the gradients of the signals in the network, all the elements of ∂L

∂θ

can be computed without explicitly writing down the analytic expressions. This
concept is also known as automatic differentiation in reverse-mode (Griewank 2012)
and a survey on its application in machine learning can be found in Baydin et al.
2015. The gradient that is backpropagated is sometimes referred to as the error
signal, which is backproagated and used to adjust the parameters in the network in
such a way that the error decreases. For the rest of this work, the author tries to
avoid the excessive derivation of gradient expressions and assumes that automatic
differentiation is performed by one of the software solutions listed in Section 2.9.
The convergence to a global optimal θ∗ of a highly nonlinear and nonconvex function
f̂(θ) is in general not guaranteed by GD and the algorithms usually end up in a
local optimum. Parameters that are not contained in the trainable parameters θ,
but influence the structure or training of the network, are called hyperparameters.
Neural networks in general are parallel computing devices and a CPU architecture
is for sure not the best place for implementing them. Also, one must be careful
with the analogies to the biology. Nature is much more complex and it seems that
no biological equivalent can be found for simple mathematical concepts such as
backpropagation.

2.2 Training

As mentioned in Section 2.1, training of ANN is most often done with backpropa-
gation. The purpose of this section is now to look at the training process in more
detail and explain various training-related techniques.
To clarify the basic terminology, an iteration contains all the steps required to per-

14



2.2. Training

form a parameter update by means of GD. A batch is a set of training samples that
is used for one iteration and the number of samples in a batch is called the batch
size. One cycle through all samples in the training set is called an epoch. The whole
training process is summarized by the pseudo code in Algorithm 2.1.

1: initialize trainable parameters
2: repeat
3: randomize order of training samples
4: for each batch in epoch
5: for each sample in batch
6: forward propagate input by iteratively computing the output of layers 1

to L
7: get prediction and compute gradient of loss function with respect to the

output
8: accumulate loss gradient over batch
9: end for
10: back propagate the accumulated gradient from layer L to 1
11: update parameters for all units by GD
12: end for
13: until stopping criteria is reached

Algorithm 2.1: Training Algorithm based on Backpropagation and Gradient
Descent

2.2.1 Initialization

The solution of a large non-convex optimization problem depends significantly on
the initial values of the trainable parameters.
The naive approach of initializing with zeroes works well for biases, but using the
same strategy for the weights in combination with tanh activation functions (Sec-
tion 2.3.2) results in a saddle point and no learning progress. Setting all weights to
the same constant value also fails because they would all behave in the same way.
So the pragmatic solution to break these symmetries and make training possible
is random initialization. Today’s most popular initialization method, the Xavier
Initialization, was introduced by Glorot and Bengio 2010. It initializes the weights
randomly by drawing the values from a Gaussian distribution with a variance de-
termined by var(wi) = 1/nin, where the wi is one of the units weights and nin is the
number of inputs for the unit. This method brings the weights for the tanh activa-
tions to a reasonable scale and also partially solves the vanishing gradient problem
that occurs when the input to an activation is too large and the tanh saturates. It
also addresses the opposite of the vanishing gradient problem, the case in which the
inputs of the tanh activation functions are to close to zero, where the tanh activations
are practically linear and the network looses its non-linear properties. For ReLU
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2. Artificial Neural Networks

units (Section 2.3.2), He et al. 2015b used var(wi) = 2/nin instead var(wi) = 1/nin,
which is known as He Initialization. The idea in both cases is to keep the variance
of the layer input the same as these of the layer output. The factor 2 makes sense,
because in the ReLU case half of the inputs are zero. Xavier Initialization sometimes
appears with var(wi) = 2/(nin +nout) to tradeoff these criterion for the forward and
backward pass.

2.2.2 Batch Size

As mentioned above, weight updates are performed after each batch of training
samples, and the number of samples used for an update is a hyperparameter called
the batch size M . Depending on the choice of the batch size, one can distinguish
the following training methods.

Batch Gradient Descent considers the full batch of all training samples (M =

N) and the averaged gradient is used. This guarantees the convergence to a local
(global if convex) optimum, but using the full training set at each iteration is com-
putationally expensive, especially for large datasets and networks with a high degree
of freedom.

Stochastic Gradient Descent performs a parameter update after each single
training sample (M = 1). This requires much less computation, but results in fluc-
tuations around the optimum and the exact optimum will never be reached. Since
the Law of Large Number does not apply, the convergence of Stochastic Gradient
Descent (SGD) is rather slow for datasets with high variance, but it is computation-
ally efficient and can be used for online learning.

Mini-Batch Gradient Descent (Li et al. 2014) takes a small subset of the train-
ing set to average the gradient for a parameter update. This has less computation
cost than using the full batch and simultaneously better convergence behavior then
SGD.
Depending on the data and the model, there is an optimal batch size between 1

and N . In practice relatively small values such as 32, 64 or 128 are used and for
large networks used for computer vision task, the batch size is often limited by the
memory size of the GPU and is chosen as big as possible. The noise added by the
stochastic nature of the method is a kind of implicit regularization (Section 2.2.6)
and can help to escape from local optimum.
In most cases in which people talk about SGD today, they actually mean mini-batch
gradient descent.
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2.2. Training

2.2.3 Update Rules

The optimization of larger networks is only feasible due to mini batch training and
efficient optimization algorithms. Since second order algorithms, such as Newton’s
method, require the costly evaluation of the Hessian matrix, in practice almost
exclusively first order algorithms based on Gradient Descent are used.
The basic rule for the parameter update in GD is given by (2.2), where t refers to
the time before and t+ 1 to the time after the parameter update.

θt+1 = θt − η∇θL(θ) (2.2)

The hyperparameter η determines the magnitude of the parameter change and is
called the learning rate or step-size. A large learning rate will lead to a large decrease
of the loss in the beginning, but later causes the insufficient decrease of the loss or
unstable convergence behavior. For this reason, a good learning rate is large at the
beginning and decreases when the minimum of the loss function is approached.
The choice of a good learning rate turns out to be a rather tricky undertaking. Simple
approaches to control the learning rate are, changing it manually, automatically
depending on the number of batches or epochs (learning rate decay or scheduler) or
dependent on a performance measure like training/validation loss or accuracy.
Due to the desire for better convergence behavior and adaptive learning rates, more
advanced versions of the basic update rule (2.2) were conceived in the last few years.
Some impotent ones of them will be now explained, but a larger overview is provided
by Ruder 2016.

Momentum (Qian 1999) utilizes the update term from the previous update step
in the current step. This damps oscillation and speeds up convergence in cases where
the surface of the loss function is in one dimension much steeper than in the other.

vt+1 = γvt + η∇θL(θ)

θt+1 = θt − vt+1

(2.3)

The hyperparameter γ controls the influence of the previous update values and is
simply termed momentum (because of the physical interpretation). A typical value
for γ is 0.9.

Nesterov momentum or Nesterov’s Accelerated Gradient (NAG) (Botev et al.
2016; Nesterov 1983) is similar to the momentum method, but does some look ahead
by evaluating the gradient at the position where it would end up with one step in
the current direction. This minor change allows to slow down earlier and reduce
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overshooting.
vt+1 = γvt + η∇θL(θ + γvt)

θt+1 = θt − vt+1

(2.4)

Experiments by Sutskever et al. 2013 have shown that NAG comes with increasing
stability and sometimes performs better compared to classical momentum.

Adagrad (Duchi et al. 2011) adjusts the learning rate individually for each pa-
rameter by involving the squared sum of all past gradients. It avoids to manually
tune the learning rate and works well for space data.

θt+1 = θt −
η√

Gt + ε
gt (2.5)

For the sake of brevity, gt = ∇θL(θ) evaluated at time t and Gt is a diagonal matrix
with elements Gt,i,i =

∑t
τ=1 g

2
τ,i. ε is a small constant that avoids division by zero.

The main weakness of Adagrad is that with steadily increasing Gt, the learning rate
gets infinitesimal small and the learning process stops.

Adadelta (Zeiler 2012) avoids the steadily increasing denominator in Adagrad by
only taking an exponentially decaying average of the previous gradients.

E[g2]t = γ E[g2]t−1 + (1− γ)g2t

θt+1 = θt −
η√

E[g2]t + ε
gt

(2.6)

The hyperparameter γ ∈ [0, 1] is chosen in a similar way as for the momentum
method above and the vector operation are element-wise (e.g. g2t = gt � gt). The
authors of the original publication recognized that hypothetically introduced units
in (2.6) are not consistent. This insight led to an update rule that completely
eliminates the default learning rate.

E[∆θ2]t = γ E[∆θ2]t−1 + (1− γ)∆θ2t

θt+1 = θt −
√

E[∆θ2]t−1 + ε√
E[g2]t + ε

gt
(2.7)

with the initial values E[g2] = 0 and E[∆θ2] = 0.

RMSprop is a frequently used method mentioned in the lecture of Hinton 2012a.
It is actually a special case of Adadelta with γ = 0.9.

E[g2]t = 0.9 E[g2]t−1 + 0.1g2t

θt+1 = θt −
η√

E[g2]t + ε
gt

(2.8)
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Adam (Kingma and Ba 2014) stands for Adaptive Moment Estimation and uti-
lizes exponentially decayed estimates of gradient and squared gradient. It is also a
more probabilistic interpretation of the problem where the estimate of the gradient
corresponds to the mean mt and the estimate of the squared gradient corresponds
to the uncentered variance vt.

mt = β1mt−1 + (1− β1)gt
vt = β2vt−1 + (1− β2)g2t

(2.9)

Initialization values m0 = 0 and v0 = 0 cause that the estimates are biased towards
zero. To compensate for this a correction is applied.

m̂t =
mt

1− βt1
v̂t =

vt
1− βt2

(2.10)

The Adam update rule is then similar to Adadelta.

θt+1 = θt −
η√
v̂t + ε

m̂t (2.11)

Typical values for the hyperparameters are β1 = 0.9 and β2 = 0.999.

2.2.4 Generalization and Overfitting

Generalization is the ability of a model to perform well on samples that are not
contained in the training set.
Overfitting is a phenomenon, that is closely related to generalization. It happens
when the model fits the training data in such a way that it just memorizes all the
individual training samples or it approximates the noise in the training data instead
of learning the underlying correlations in the data distribution. The major causes
for overfitting are a too small training set that does not sufficiently represent the
true data distribution, and a too high degree of freedom in the model parameters,
so that the model has the capacity to approximate the noise in the data.
With increasing overfitting, a model looses is ability to generalize. Therefore, the
goal for obtaining a good model is to avoid overfitting and maximize its capability
to generalize.
To get an estimation how well a model generalizes to data that are not contained
in the training set, a second, normally smaller, test set is used on which the model
is evaluated. Since the test set is not always available and it should not be involved
in the design and training of the model, a third set, the so called validation set, is
kept out of all available training samples and is used for model validation during the
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training. The set of all available samples is normally split into two disjoint subsets,
training set (80%) and validation set (20%).
Validation as part of the training process is done by evaluating the loss function
on the validation set after each iteration or epoch and can be used for selecting
hyperparameters. The validation loss will always be higher than the training loss,
as long as the training and the validation data originate from the same data dis-
tribution. The gap between the training and the validation loss can be interpreted
as a measure of overfitting. The larger the gap, the larger the overfitting and the
smaller the models generalizability.

2.2.5 Stopping Criterion

A good question is, when stop training? Too few training iterations reduce the error
insufficiently and too many can lead to overfitting the training data.
The pragmatic solution to this problem is to stop when the model starts overfitting,
which can be determined by observing the validation loss during training. Stop-
ping the training process after the validation loss stops improving, is called Early
Stopping.
It is also common practice to train for a fixed number of iterations while regularly
saving model snapshots and evaluating them afterwards.
The optimal training time is actually a hyperparameter with regularization effect.

2.2.6 Regularization

Regularization considers various methods for reducing overfitting.
The probably most common form of regularization is called Weight Decay or L1/L2
Regularization. It adds an extra term to the loss function that penalizes large
weights and thus constrains the degrees of freedom that would be required to ap-
proximate the noise in the training data. It is also beneficial that it forces the
network to learn small weights because large weights slow down the convergence
process.
For L2 Regularization the penalizing term is given by λ

2n

∑
w2, where the sum is

over all n weights w in the network. The hyperparameter λ controls the influence
of the weight decay and the factor 2 is used for getting a term that leads to ηλw
in the parameter update (2.2). The L2 penalty is the L2-norm on the weights and
can also be interpreted as a zero mean Gaussian prior on weights (Murphy 2012,
Section 16.5.6). An interesting property of the L2 regularization is that, if the input
signals of a unit are too strongly correlated, it will weight both of them the half
rather than giving the full weight to one of them.
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The L1 Regularization is constructed similar to the L2-regularization. By using
the L1-norm instead of the L2-norm, one gets λ

n

∑
|w| as the penalty term. The

L1 penalty brings many weights exactly to zero and therefore enforces the learning
of sparse weight matrices. Sparse weights are virtually invariant to the measurement
noise and can be helpful for the interpretation of the signals in the network.
In practice, the L2 regularization leads usually to better performance than the
L1 regularization. The combination of L1 and L2 regularization is known as elastic
net regularization (Zou and Hastie 2005).
Another simple regularization method is the application of hard constraints on the
weights. This can be done by clamping the norm of the weight vector for each
unit by a constant value (‖w‖2 < c), which preserves the weights from exploding
and keeps activation functions as tanh out of saturation. Another advantage of this
method is that the weight updates are always bound, even if the learning rate was
chosen much too high.
The regularization of biases is not common practice and leads to worse results (Hin-
ton 2012b).
More advanced regularization techniques, that introduce randomness in the training
process are Dropout (Section 2.3.6), DropConnect (Wan et al. 2013), Stochastic or
Fractional Pooling (Graham 2014; Zeiler and Fergus 2013a) or simply the adding of
noise in the forward pass (to the input, weights or activations).
Other efficient methods to conquer overfitting are Early Stopping (Section 2.2.5) or
the artificial increasing of the training set, which is referred to as data augmenta-
tion. Data augmentation is often used for image data, where spatial transformations
(shifting, scaling, rotating, flipping, etc.) or channel manipulations (brightness, con-
trast, saturation, color, etc.) are applied.
Furthermore, every kind of prior knowledge that helps the model to better generalize
can be interpreted as regularization. For instance architectural constraints (number
of units, number of layers, layer type etc.), supervised (Section 2.7) or unsupervised
pre-training etc.
Many authors make a distinction between explicit and implicit regularization meth-
ods. The definition of these terms are not always clear. Sometimes explicit means,
that regularization was the primary motivation for the concept, and implicit, that
the regularization is more or less a side effect of the original idea. Another defini-
tion refers to implicit, when the method is only applied during training, and explicit,
when it is done by construction and persist after training. Which of the definition
is used is often apparent from the context.
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2.3 Feed-Forward Layer

To provide a mathematical description of the various layer types that are used in
this work, consider the output zl ∈ RDl of a single layer in a FFNN. The superscript
l ∈ {1, . . . , L} indicates the layer index and Dl refers to the length of the layer’s
output vector. Since the input to a layer is the output of the previous layer, the
layer itself can be described by a mapping f lθ : RDl−1 → RDl or more precisely, the
layer output can be expressed as

zl(zl−1(x)) = f lθ(z
l−1(x)) (2.12)

The output of the first (input) layer is then by definition the network input

z0(x) := x (2.13)

and the output of all further layers is the concatenation of the preceding layers.

zl(x) = (f lθl ◦ · · · ◦ f
1
θ1)(x) (2.14)

The network output y(x) is then given as the output of the last layer zL(x) and the
set of all trainable parameters in the network is the union of the parameters defined
in the individual layers θ = {θL, . . . , θ1}. In principle, the layer function f lθ can be
any composition of mathematical operations, as long as they are differentiable and
allow backpropagation.
This notation is applied for all subsequent layer descriptions, except for the convo-
lutional and pooling layers, where it is slightly changed. It must also be mentioned
that, in contrast to the simplified illustrations (Figure 2.2 and 2.5), the activation
functions are now regarded as separate layers.
The rest of this section discusses the basic linear layer and nonlinear activation,
followed by more computer vision related layers for convolution and pooling, softmax
for classification and training related layers for Dropout and Batch Normalization.

2.3.1 Fully-connected

A Fully Connected or Dense Layer performs a linear transformation on its inputs
and is therefore also known as Linear Layer. The layers of the MLP4 in Figure 2.2
are all of type FC. The description of a fully connected layer is straightforward and
given by (2.15). Where W ∈ RDl×Dl−1 are the weights and b ∈ RDl are the biases of

4A Multilayer Perceptron (MLP) is a FFNN that consists only of FC-layers and has at least
one hidden layer.
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the layer.
f lW (zl−1(x)) = W lzl−1(x) + bl (2.15)

Weights and biases are the trainable parameters θl = {W l, bl} of a FC layer.
Since all units in a FC layer are connected to all inputs of the layer, the degree of
freedom in the layer explodes combinatorially with the number of units in layer l
and l − 1. The resulting high number of DlDl−1 + Dl parameters make FC layers
infeasible for large networks.
FC layers are either used for linear regression or whenever global connections are
required. Convolutional layers (Section 2.3.3) in contrast have local connections and
consider only local information.

2.3.2 Nonlinear Activation

To enable a ANNs to model nonlinear relationships, it requires nonlinear elements5.
These nonlinearities are provided by the element-wise operations of activation func-
tions, as formulated in (2.16).

f lσ(zl−1(x))d = σ(zl−1d (x)) (2.16)

Due to the element-wise operation, the input dimension of an Activation Layer is
equivalent to its output dimension (Dl = Dl−1). The index d = 1, . . . , Dl indicate
the individual units in the layer and σ : R→ R represents the activation function.
There are many possible, application-dependent candidates for activation functions.
In the following a description of several important ones will be presented. They
all share two desirable properties. First, they are piecewise differentiable, so that
backpropagation can be applied, and second, they are monotonic increasing to avoid
chaotic behavior during training.
A known problem with some activation functions is that their gradient vanishes if
they are piece-wise constant or near-constant. A direct consequence of the chain
rule in this case is that no error signal can be propagated back to previous layers
that could be used for parameter update.
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Fig. 2.4: Activation Functions

5It can easily be shown that the output of a concatenation of linear layers always depends
linearly on the input.
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Sigmoid or Logistic activation function sigm : R→ [0, 1] (Figure 2.4a)

sigm(u) =
1

1 + e−u
(2.17)

was originally motivated by its biological interpretation as the firing rate of a neuron.
Today, it is primary used as output for binary classification, logistic regression or
whenever a continues value between 0 and 1 is modeled. Sigmoid activations have
some major drawbacks regarding DNNs. The gradient vanishes for large positive
and negative input values, and since their output is not zero-centered, it will always
be positive as well as the input to the subsequent layer.

Hyperbolic Tangent activation function tanh : R→ [−1, 1] (Figure 2.4b)

tanh(u) =
1− e−2u

1 + e−2u
(2.18)

is similar to the sigmoid activation function, it still suffers from vanishing gradients,
but is centered at zero. The relation between the two is quite obvious and given by
tanh(u) = 2 sigm(2u)− 1.

ReLU (Nair and Hinton 2010) is quasi the default activation function for DNNs
today. The Rectified Linear Unit (ReLU) (2.19) maps any value in R to R+. Its
graph is shown in Figure 2.4c.

relu(u) = max(u, 0) (2.19)

ReLU, compared to sigm and tanh, greatly accelerates the convergence of SGD
(Krizhevsky et al. 2012). This is done by avoiding the vanishing gradient problem for
positive input values and is computationally much cheaper. It can be implemented
by simply thresholding a matrix of activations at zero and it does not require an
normalization of the input (Krizhevsky et al. 2012). Unfortunately, ReLUs can "die"
out. This happens when the weights are updated in such a way that the unit will
never activate again. In practice, ReLU networks tend to learn sparse feature. Due
to SGD, the chance is high that the gradient is none-zero for some input. Therefore,
dying ReLUs are not a real problem as long as the learning rate is not chosen too
high.

Leaky ReLU (Maas et al. 2013) provides a solution to the "dying ReLU" problem.
The Leaky ReLU function (2.20) has a small slope µ for u < 0, as it can be seen in
Figure 2.4d.

leakyrelu(u) = max(u, 0) + min(µu, 0), µ > 0 (2.20)
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By setting µ = 0 the Leaky ReLU function is equal to the normal ReLU function.
Xu et al. 2015a compared ReLU with Leaky ReLU and found that Leaky ReLU
does slightly better.
There are plenty of other activation functions building on the concept of ReLU. The
probably most notable are PReLU (He et al. 2015b), which uses trainable parameters
for Leaky ReLU, and Maxout (Goodfellow et al. 2013b) as a generalization of ReLU
and Leaky ReLU.

2.3.3 Convolutional

Convolution as a linear operator is long known and described by (2.21) (see Dominguez
2015 for history of convolution operator).

f(x) ∗ g(x) =

∫ inf

− inf

f(s)g(x− s) ds (2.21)

It can be understood as measure of the similarity between two functions f and g,
or as the weighting of f with g, g is called the kernel or filter of the convolution and
it is said that f is convolved with g.
The discrete form of convolution

f(x) ∗ g(x) =
N∑

i=−N

f(i)g(x− i) (2.22)

is one of the most often used operations in signal processing and may be familiar
from image manipulation software like GIMP (GNU Image Manipulation Program
2018, Section 8.2), where different convolution kernels are used to produce different
effects like sharpening, blur or edged detection. The definition of convolution is
strongly related to the definition of cross-correlation, by the fact that one obtains
the cross-correlation when changing the minus sign in (2.21)/(2.22) into a plus sign.
The idea behind Convolution Layers is to learn convolution kernels for efficient
pattern recognition (a.k.a. template matching). In Figure 2.5, a simple version
of a Convolutional Neural Network (CNN) is shown to illustrate some important
properties of convolution layers. The first thing that strikes out in Figure 2.5 is
that the three hidden layer are convolutional layers and differ from the FC layer in
Figure 2.2. They are only locally connected and all the units in one layer share the
same weights (same coloring indicates same weight). The weights of convolutional
layers are also termed feature. The subset of input units that can influence a unit
within a convolutional layer is called the receptive field (analogous to a biological
vision system). For instance, unit z23 can only receive signals from the input units
x4, x5, x6, x7 and x8, so they represent the receptive field of z23 . The number of
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different weights in a convolutional layer is called the kernel size. In addition to the
kernel size, there are two more hyperparameters for convolutional layers, padding
and stride. Padding considers the behavior of the first and last units in the layer.
There are two types of padding, valid (layer 3 in Figure 2.5) and same (layer 4).
Valid means that no padding is performed, while same means, that zero padding,
which is also commonly used in signal processing, is utilized to keep the layers in-
and output dimension the same. Stride is the number of pixels the filter is shifted
spatially (horizontally or vertically) on the layer input during convolution. For
instance, layer 1 has stride 1, whereas layer 2 has stride 2.
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Fig. 2.5: 1D Convolutional Neural Network; subscript indicates the index of the unit
in a layer, superscript the index of a hidden layer. The blue area with red boundary
contains the units that are located in the receptive field of unit z23 .

Most tasks in computer vision demand for processing two-dimensional images with
3 channels (RGB) or more (stereo, depth, infrared, alpha, etc.). This leads to a
network input of shape (I, J, C), where I is the height, J the width and C are
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the channels of the image. Convolution is then performed in two dimensions and
the need to learn more than one feature per layer results in a layer output of shape
(I l, J l, C l), where I l and J l are the spatial dimensions and C l is the depth or number
of features.
For a formal description, such a convolution layer can be considered as a mapping
fC : RIl−1×J l−1×Cl−1 → RIl×J l×Cl with (M l, N l) as the kernel size and C l as the
parameter for defining the number of features in the layer.
As long as the kernel is larger than 1 × 1, the spatial output size will be smaller
than the input size. To keep the dimensions the same (zero padding), b(M l − 1)/2c
rows before the first row, bM l/2c after the last row, b(N l − 1)/2c columns before
the first column and bN l/2c after the last column have to be inserted.
For sake of brevity, (2.23) describes the output of a convolution layer with no padding
and stride (1, 1). The height and width of the output are then given by I l =

I l−1 −M l + 1 and J l = J l−1 −N l + 1.

fC(zl−1(x))il,jl,cl =
M l∑
i=1

N l∑
j=1

Cl−1∑
c=1

W l
i,j,c,clz

l−1(x)il+i,jl+j,c + blcl (2.23)

(2.23) is applied for each spatial location il = 1, . . . , I l, jl = 1, . . . , J l and every
channel cl = 1, . . . , C l. One output element is the weighted sum over all the elements
in a location specific input volume of shape (M l, N l, C l−1) plus a bias term. The
convolution kernels are then a 4th-order tensor W l ∈ RM l×N l×Cl−1×Cl and the bias
bl ∈ RCl is a vector containing one element per feature. The weights and biases are
the trainable parameters θl = {W l, bl} of the layer.
Compared to the (I l−1J l−1C l−1 + 1)C lI lJ l trainable parameters of a fully connected
layer, the utilization of convolution reduces these number to (M lN lC l−1 +1)C l, and
most important, the number of parameters is independent of the spatial dimensions
of the in- and output. An interesting insight is it, that a convolutional layer can
therefore be trained on a comparable small spatial input and later evaluated on a
much larger input.
The 1D convolutional layers in Figure 2.5 are special cases of (2.23). For instance,
layer 3 would have an input shape (3, 1, 1), kernel size (3, 1) and 1 feature. It can
also be noted that (2.23) can always be reshaped in such a way that the in- and
output are vectors (Balestriero and Baraniuk 2017).
The special case of an 1 × 1 convolution layer (Lin et al. 2013) is often used for
adapting the depth (number of features) of the output, or in other words, the features
are linearly combined without changing the spatial information. Depth is also the
primary parameter to adjust the complexity of the network, higher depth means
more representational capacity. The 1× 1 convolution can also be used for feature
fusion (Lin et al. 2016), when the feature maps originate from different sources, and
it plays an important role in network compression (Kim et al. 2015). It should also
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be mentioned, that a convolutional layer with kernel size equals the input size can
be interpreted as a fully connected layer in the depth dimension (Long et al. 2014).
The concept of local connections and weights sharing allow Deep Convolutional Neu-
ral Networks to efficiently learn rich feature hierarchies, but the idea of convolution
is also a kind of prior knowledge that is introduced in the network topology and as-
sume that the patterns in the data also have a hierarchical structure. Normal CNNs
only provide translational invariance6 and are therefore notoriously weak when it
comes to handling other types of variances, like scale or rotation.
CNNs are biologically inspired by the experiments of Hubel andWiesel 1962, 1968, in
which they found that cells in the mammalian visual cortex are sensitive to small sub-
regions in the visual field, called the receptive field. These cells tile the input with
sub-regions and function as local filters that can exploit spatial correlations. LeCun
et al. 1998; LeCun et al. 1990 firstly introduced a CNN that mimics this biological
structure and applied it successfully to handwritten character recognition. More
recent work (Bronstein et al. 2017) extends the concept of CNN to non-euclidean
data like graphs and manifolds and Deformable Convolution (Dai et al. 2017) is
a promising approach that enables CNN to learn geometric transformations. For
the basic theory on CNNs, Dumoulin and Visin 2016 provides a detailed guide
on convolution arithmetic and the lecture slides from Stanford University CS231n:
Convolutional Neural Networks for Visual Recognition 2018 may be considered as a
compact introduction.

2.3.4 Pooling

Pooling is common practice in signal processing, where it is often termed sub- or
down-sampling. A Pooling Layer is similar to a convolutional layer and normally
applied after one or more convolutional layers. It has local connections and the
hyperparameters, kernel size, padding and stride are the same as for convolutional
layer, but instead of learning weights, a fixed pooling policy is used to calculate
the layer output. The most commonly used pooling policies are Max-Pooling and
Average-Pooling (illustrated in Figure 2.6).
For the mathematical description of these two cases, the same notation as in Sec-
tion 2.3.3 is adopted, (M l, N l) is the kernel size, (s, s) the stride and the output size
(I l, J l, C l) is then given with I l = b(I l−1 −M l)/sc + 1, J l = b(J l−1 − N l)/sc + 1

and C l = C l−1. (2.24)/(2.25) is then applied for each spatial location il = 1, . . . , I l,
jl = 1, . . . , J l and every channel cl = 1, . . . , C l.

6Translational invariance in this context actually means equivariance, but it is a commonly used
term. Translation invariance actually means that the system produces exactly the same response,
regardless of how its input is shifted. Equivariance actually means that the system works equally
well across positions, but its response are shifts with the position.

28



2.3. Feed-Forward Layer
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Fig. 2.6: Pooling policies with kernel size (2, 2) and stride (2, 2), input size (4, 4)

Max-Pooling layer takes only the highest activations from input and so extracts
only the most important features.

fP (zl−1(x))il,jl,cl = max
i=1,...,M l

j=1,...,N l

zl−1(x)ils+i,jls+j,cl (2.24)

Average-Pooling or Mean-Pooling layer averages the activations of the previous
layer and so extracts features more smoothly.

fP (zl−1(x))il,jl,cl =
1

M lN l

M l∑
i=1

N l∑
j=1

zl−1(x)ils+i,jls+j,cl (2.25)

Because average-pooling takes all features into account, whether they are important
or not, it is less often used for tasks such as classification and object detection.
Pooling layers exploit, that the exact location of a feature is not as important as its
relative location to other features. Their usage is beneficial in tree ways, first, they
reduce the spatial dimension and lead to less computation in the upcoming layers,
second, they reduce information redundancy present in the input data, and third,
they make the system invariant to small translations. The pooling operations in
Figure 2.6 reduce the number of parameters by 75%.

2.3.5 Softmax

For problems like multi-class classification or action prediction in reinforcement
learning7, it makes sense to have a network output that can be interpreted as a
probability distribution. This is where the Softmax Layer comes into play. The
softmax function is a mapping RDl → [0, 1]D

l , where the output values sum up to
1. The softmax layer (2.26) is defined by the softmax function and computes the

7Reinforcement learning builds on the idea of an software agent that performs actions in an
environment and has the objective to maximize an accumulated long-term reward.
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normalized exponential function for all the units in the layer.

f l(zl−1(x))d =
ez

l−1
d (x)∑Dl

i=1 e
zl−1
i (x)

(2.26)

The output dimension of the softmax layer is equivalent to its input dimension
(Dl = Dl−1). The subscript d = 1, . . . , Dl indicates the d-th unit in the layer.

2.3.6 Dropout

The use of dropout (Srivastava et al. 2014) provides an effective way to conquer
the overfitting of large networks. The key idea behind dropout is to randomly
disconnect (drop) units while training, this prevents the units from too much co-
adaption and leads to a fast to evaluate ensemble of many smaller models at test
time. A mathematical formulation of a dropout layer is straightforward.

f lD(zl−1(x)) = rl � zl−1(x), rld ∼ Bernoulli(p) (2.27)

Where the vector rl contains Dl independent Bernoulli variables, each with proba-
bility p. They are sampled at training time and set to 1 at test time. The variable
p, as a hyperparameter, is also known as the dropout rate or ratio and has a typ-
ical value between 0.5 and 0.8. Higher dropout rate reduces overfitting, but also
increases the convergence time.

2.3.7 Batch Normalization

When training a Deep Neural Network, the input distribution of each layer changes
at each iteration. This phenomenon is known as internal covariance shift (Ioffe and
Szegedy 2015). It slows down training by requiring small learning rates and carefully
chosen initialization parameters to keep the nonlinearities out of saturation. Batch
Normalization (BN) solves this issue by normalizing the layer input at each iteration
(per batch). It works by shifting the layer input to zero-mean and scaling it to the
unit variance.
BN layers are typically applied between linear layers and their nonlinear activations.
Hence, their output dimension is equal to their input dimension (Dl = Dl−1).
The formal description of a BN layer is given in Algorithm 2.2. The parameters
γ ∈ RDl and β ∈ RDl are trainable and learned during training. The constant
ε ≈ 1e-5 is introduced for numerical reasons and avoids dividing by zero.
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1: for each iteration
2: do forward propagation of M samples and collect the output of layer l − 1

Bl−1 = {Z l−1
1 , . . . , Z l−1

M }
3: for d in 1, . . . , Dl

4: µB = 1
M

∑M
m=1 Z

l−1
m,d

5: σ2
B = 1

M

∑M
m=1(Z

l−1
m,d − µB)2

6: ẑl−1d =
zl−1d − µB√
σ2
B + ε

7: zld = γdẑ
l−1
d + βd

8: end for
9: update exponential moving average of mean and variance
10: do back propagation
11: end for

Algorithm 2.2: Batch Normalization

A per batch based normalization is not desirable during inference and so the mean
and variance over all N training samples can be used, but it is much easier to
calculate moving averages during training and used them instead.
BN became quickly popular, because it increases convergence speed and makes the
training of deeper networks easier. It also comes with some regularization effect and
makes the use of Dropout less important, but they both work well in combination
and usually do not require additional L2 regularization.

2.3.8 Skip Connections

Skip connections can be considered as a bypass connection between a layer and its
output. Given a layer f l

θl
and the input zl−1(x), the skip-connection in form of a

layer is formulated in (2.28).

f lS(zl−1(x), f lθl) = zl−1(x) + f lθl(z
l−1(x)) (2.28)

During backpropation, skip connections provide a stronger error signal and therefore
address the vanishing gradient problem. They allow the signals to bypass units or
pathways that have learned something wrong and can be seen as a form of implicit
regularization.

2.4 Recurrent Layer

When it comes to sequence data, like audio, video, text or DNA, classical FFNNs
have the handicap, that they possess no persistent memory and hence can not handle
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2. Artificial Neural Networks

temporal patterns in a sequence of samples.
The first idea that comes in mind to address this problem is to take the output of
a network from the previous time step and feed it additionally into the network at
the current time step. The resulting network structures are called Recurrent Neural
Networks (RNNs) and known since the 80s (Elman 1990; Rumelhart et al. 1986;
Werbos 1988).
In general, a RNNs can be described in form of a function ht = F (ht−1, xt, θ). Where
x denotes the input vector, ht the output vector at time step t and θ the trainable
parameters.
Training of RNNs can be done via Backpropagation Through Time (BPTT), which
is done in practice by unfolding the network (Figure 2.7) and subsequently training
the unfolded network as it would be done for a normal FFNN, but with the except,
that the entire epoch has to be fed into the unfolded layer. In order to keep training
feasible, usually only a limited number of time steps is considered during the training
process, what is known as truncated Backpropagation Through Time (BPTT) and
typically done per batch.

A

xt

ht

= A

x0

h0

A

x1

h1

A

x2

h2

A

x3

h3

. . . A

xt

ht

Fig. 2.7: Unfolding of a one layer Recurrent Neural Network8

To naturally integrate this idea into the framework described in Section 2.3, it is
now formulated in form of recurrent units in recurrent layers.
The rest of this section describes the basic recurrent unit or cell (RNN) and some
more advanced recurrent cells (LSTM, GRU) in detail.

2.4.1 RNN

The basic recurrent cell is depicted in Figure 2.8a and formally described with
(2.29)9. Where ht is the so called hidden state, the signal that is recursively fed
back at the next time step. The output of the RNN cell is simply the hidden state.

ht = tanh(W [xt, ht−1] + b) (2.29)
8Figures heavily inspired by Understanding LSTM Networks – colah’s blog 2017
9The square brackets mean the concatenation of the vectors inside.
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2.4. Recurrent Layer

Even though RNNs are theoretically able to learn long-term dependencies, they
seem to bee incapable to learn them in practice. This may be no surprise since
by unfolding (Figure 2.7) a RNN shows up as a DNN in time suffering from the
vanishing gradient problem as normal FFNNs.
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Fig. 2.8: Popular Recurrent Layers 10

2.4.2 LSTM

To enable RNNs to learn long term dependencies, Hochreiter and Schmidhuber 1997
introduced the Long Short-Term Memory (LSTM) cell, as shown in Figure 2.8b. The
basic idea behind LSTM is to have a cell state that is passed from one time step
to the other and some trainable gates, that add and remove information from the
cell state. A gate is actually a linear layer with a sigmoid activation function and
an element-wise multiplication with a signal. Since the value of the sigm function is
always in the range between [0, 1], the signal is completely suppressed for a value of
0 or can pass without any modification for a value of 1. In the original LSTM, there
are three gates, the input it, the output ot and the forget gate ft. (2.30) represents
the description of a LSTM cell, where xt is the input, ht is the output and ct the
cell state.

ft = σ(Wf [xt, ht−1] + bf )

it = σ(Wi[xt, ht−1] + bi)

ot = σ(Wo[xt, ht−1] + bo)

ct = ft � ct−1 + it � tanh(Wc[xt, ht−1] + bc)

ht = ot � tanh(ct)

(2.30)

The name LSTM comes because, besides the actual input, both the long-term state
and the output from the previous time step are fed into the cell. There exist a bunch
of LSTM variants, for instance, Gers and Schmidhuber 2000 added peephole con-
nections to let the gates access the cell state. (Greff et al. 2015) compared the most

10Figures heavily inspired by Understanding LSTM Networks – colah’s blog 2017
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popular variants of LSTM and found that they all perform with comparable results.
Jozefowicz et al. 2015 performed an extensive evolutionary architecture search, com-
pared over thousand different recurrent cells and found some that perform better
on certain tasks. LSTM in general does not solve the vanishing gradient problem,
it circumvents it by adding the cell state as a memory element.

2.4.3 GRU

Gated Recurrent Unit (GRU) (Cho et al. 2014) is the most popular variant of LSTM.
It simplifies the LSTM cell by combining the forget and input gates into a single
update gate and merging the cell and hidden state into a single signal. This results in
fewer trainable parameters per cell, with same or even better performance compared
to the LSTM cell. The description of a GRU cell is given in (2.31), zt is the update
gate and rt is called the reset gate.

zt = σ(Wz[xt, ht−1])

rt = σ(Wr[xt, ht−1])

h̃t = tanh(W [xt, rt � ht−1])
ht = (1− zt)� ht−1 + zt � h̃t

(2.31)

2.4.4 Bidirectional RNN

LSTM can only preserve information from the past, not from the future. To also
consider information from the future, the sequence can be processed by two separate
recurrent layers, one does this from the beginning to the end of the sequence and
the other does it in reverse order, from the end to the beginning. Therefore, this
concept is called bidirectional RNN/LSTM/GRU (Graves and Schmidhuber 2005;
Schuster and Paliwal 1997). The hidden state of the two layers is then merged by
either addition, multiplication or most often by concatenation. The second layer
provides more context and typically leads to better results, but it also doubles the
number of trainable parameters.
Recurrent layers have been extended to multiple dimensions (Graves et al. 2007) and
can be used for hierarchical subsampling (Graves 2012, Chapter 9). LSTM has been
combined with convolution (Bai et al. 2018). In context of system identification and
control theory, the concept of LSTM has also been extended to learn probabilistic
State Space Models (Doerr et al. 2018) and inspired more sophisticated mechanisms
for memory management (Graves et al. 2016).
Recent experiments by Bai et al. 2018 show that relatively simple CNN architectures
outperform LSTM on a diverse range of tasks.
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2.5. Loss Functions

2.5 Loss Functions

As mentioned in the previous section, an error measure called the loss function is
required to define the training objective. The loss in general is a mapping L :

RN×C × RN×C → R which maps the network outputs ŷ and corresponding labels y
of all N samples to a real value.
To avoid the confusion in advance, the notation here considers the case of a full
batch update, if SGD is used N has to be replaced by the batch size M .
The requirements on a loss function are, that it has to be differentiable, so Gradient
Descent (GD) can be performed, and it should be convex with respect to the network
output, so it does not make the problem non-convex if the network itself is convex11.
Depending on the application, a loss is divided by N .
The rest of this section introduces some basic loss functions for classification and
regression, as well as a more advanced concept for sequential data called the
Connectionist Temporal Classification (CTC).

2.5.1 L2 Loss

The L2 Loss

L =
N∑
i=1

(yn − ŷn)2 (2.32)

is the square of the L2 Norm of the difference between actual and desired value. It
is the Mean Square Error (MSE) not divided by N , has nice properties regarding
gradient calculation and is mostly used for linear regression.
Further, it can be shown, that minimizing MSE is equivalent to minimizing the
negative log-likelihood, or more general, the cross entropy between the empirical
data distribution and a Gaussian model (Goodfellow et al. 2016, Section 5.5.1).

2.5.2 L1 Loss

The L1 Loss

L =
N∑
n=1

|yn − ŷn| (2.33)

is the sum of absolute values of the difference between actual and desired value.
It is the Mean Average Error (MAE) not divided by N and, compared to the L2
Loss, less prone to outliers. Regarding gradient calculation, the L1 Loss has the
disadvantage that it is not a smooth function of the parameters.

11The composition of two convex function is also convex. In this case the concatenation of the
network and the loss function is convex if they are both convex.
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2.5.3 Smooth L1 Loss

The Smooth L1 Loss (Girshick 2015)

L =
N∑
n=1

smoothL1(yn − ŷn), smoothL1(x) =

0.5x2, if |x| ≤ 1

|x| − 0.5, otherwise
(2.34)

is the combination of L1 and L2 Loss, which is differentiable at zero and less sensitive
to outliers.
Further, the Smooth L1 Loss is a special case of the Huber Loss (Huber 1964).

2.5.4 Hinge Loss

The Hinge Loss is used for maximum-margin classification (Bishop 2006, Section 7.1),
most notably for Support Vector Machines (SVMs). It is defined by

L = max(0, 1− yŷ) (2.35)

Where y ∈ ±1 is the target class and ŷ ∈ R is the classifier output (not the predicted
class label). It can be seen in (2.35) that when ŷ and y have the same class, meaning
that the prediction is correct and |ŷ| ≥ 1, the Hinge Loss is 0, but when they have
opposite sign it increases linearly with ŷ (one-sided error).
In context of our NN framework, a linear classifier in form of a SVM consists of a
FC layer with linear activation that is trained with the Hinge Loss.

2.5.5 Cross Entropy Loss

For solving various classification problems, a family of appropriate loss functions has
been formulated. They share in common, that they try to maximize the likelihood of
the correct class. Maximum Likelihood Estimation (MLE) essentially boils down to
maximizing the Cross Entropy (CE) between the empirical data distribution of the
labels p and the predicted model distribution q (Bishop 2006, Section 5.2). This is
why they are called Cross Entropy Loss or sometimes, due its logarithmic structure,
also Log Loss.
Further, minimizing the CE is also equivalent to minimizing the Kullback Leibler di-
vergence (KL divergence) between p and q12.
Consider the case of a binary classifier with labels yn ∈ {0, 1} and a sigmoid output
layer containing one single unit. In this case, the output of the network can be

12Given the relation between CE and KL divergence, H(p, q) = H(p)+DKL(p, q), and since the
data distribution is independent of the model parameter, H(p) is just an irrelevant constant in
view of optimization.
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interpreted as conditional probability P(y = 0|x) = y(x, θ), P (y = 1|x) = 1−y(x, θ)

and formulated as Bernoulli distribution

P(y|x, θ) = ŷ(x, θ)y(1− ŷ(x, θ))1−y (2.36)

The CE Loss is then given by the negative log likelihood of this Bernoulli distribution

L = −
N∑
n=1

(yn log(ŷn) + (1− yn) log(1− ŷn)) (2.37)

Since y can only be 0 or 1, (2.37) can also be written as

L = −
N∑
n=1

log(pn), pn =

ŷn, if yn = 1

1− ŷn, otherwise
(2.38)

In the case of K separate binary classifiers with labels ynk ∈ {0, 1} and a sigmoid
output layer containing K units, (2.37)13 extends to

L = −
N∑
n=1

K∑
k=1

(ynk log(ŷnk) + (1− ynk) log(1− ŷnk)) (2.39)

and is usually named Binary Cross Entropy Loss or Logistic Regression Loss.
In case of a multi-class classifier, where we have K mutually excluding classes, the
labels ynk ∈ {0, 1} have a one-hot coding scheme (1-of-K) and a softmax output
layer with K units. In this case the network output can be interpreted as P(yk =

1|x) = yk(x, θ) and formulated as a multinomial distribution with one observation.
The resulting expression for the CE Loss is given by

L = −
N∑
n=1

K∑
k=1

ynk log(ŷnk) (2.40)

Other common names for this version of the CE Loss are Categorical Cross En-
tropy Loss, Multinomial Logistic Regression Loss or Softmax Loss.

2.5.6 Focal Loss

In terms of (2.38), the Focal Loss (Lin et al. 2017), here for the binary case,

L = −
N∑
n=1

αn(1− pn)γ log(pn) (2.41)

13ynk is abbreviated and denotes yk(xn, θ)
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is a dynamically scaled version of the Cross Entropy Loss. It was developed in
context of object detection to address the large imbalance between the classes (e.g.
the background class may appear 100 or 10000 times more often than the object
class). The idea is to weight down easy samples and focus more on hard samples,
whereby the hard samples can be interpreted as the outliers. The focusing parameter
γ ≥ 1 is a tunable hyperparameter, but a value of 2 seems to work fine in most cases.
αn is a class specific weighting factor that is set to α ∈ [0, 1] for the first and 1− α
for the second class. In practice α may be set to the inverse of the class frequency
or gets chosen by cross validation.

2.5.7 CTC Loss

The Connectionist Temporal Classification (CTC) is an approach to solve the Dy-
namic Time Warping (DTW) problem, that occurs when a RNN has to map a
sequence with unsegmented input data of length T to a label sequence of variable
length U ≤ T (e.g. for speech or handwritten text recognition). It was first intro-
duced by Graves et al. 2006 and, to make the reference clear, prior approaches to
this problem were often based on HMMs (Rabiner 1989) or combinations of a HMM
and a NN.
For the formal description of the CTC, consider a set of labels L (e.g. all 26 English
alphanumeric characters). Then an additional label, the ’blank’, is introduced to
indicate the boundaries for segmenting the sequence and representing the case when
no label is present. The extended alphabet is then given by L′ = L ∪ {blank}
and the network output for each of the T time-steps can be chosen as a softmax
distribution (Section 2.3.5) over K = |L′| classes. An element of the output ytk is
then the probability of observing label k at time-step t. The complete output y is
then a distribution over the set L′T , representing the probability of all possible ways
of aligning all possible label sequences with the input sequence. To distinguish them
from the label sequence l, the elements of L′T are now referred to as paths π.
With the assumption, that the output probabilities at different time-steps are con-
ditionally independent, the conditional distribution over π ∈ L′T is given by

P(π|y) =
T∏
t=1

ytπt (2.42)

The next step is to define a many-to-many mapping B : L′T → L≤T that transform
a path into a label sequence. Therefore, B merges repeated continuous labels to a
single one and removes the ’blank’ labels (e.g. "__aa_b_c_cc_dd_" to "abccd",
where ’_’ represents the blank). The conditional probability of a given labeling
l ∈ L≤T is then given by the sum of all paths mapped into it (marginalize over the
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set of all possible alignments).

P(l|y) =
∑

π∈B−1(l)

P(π|y) (2.43)

For training the mode, the negative log likelihood loss can be defined by

L = − ln
N∏
n=1

P(ln|ŷn(x, θ)) = −
N∑
n=1

ln P(ln|ŷn(x, θ)) (2.44)

The problem now is that the number of possible paths grows exponentially with
the sequence length T , making the calculation of the conditional probability in
(2.43) practically infeasible. Fortunately, this problem can be solved with dynamic
programming14. The algorithm to accomplish this is known as the forward-backward
algorithm from the theory of HMMs, where it is used for inference.
After applying the forward-backward algorithm, as described in Graves 2012, Sec-
tion 7.3, the loss function (2.44) can be formulated by

L = −
N∑
n=1

ln

U ′n∑
u=1

α(t, u)β(t, u) (2.45)

where α(t, u) and β(t, u) are the forward and backward variables of the forward-
backward algorithm at time-step t. To allow blanks in the paths, blanks were added
at the beginning, end and between the label sequence, resulting a modified label
sequence l′ with length U ′ = 2U + 1. The CTC-Loss (2.45) is differentiable with
respect to the network parameters and used for training the network with BPTT
(see Graves 2012, Section 7.4).
In the inference case, the easiest way to get the final label sequence l̂ is by best
path decoding (Graves et al. 2006), which assumes that the most probable path π∗

corresponds to the most probable class at each time-step.

π∗ = argmax
π∈L′T

P(π|ŷ) (2.46)

l̂ = B(π∗) (2.47)

However best path decoding does not guarantee to find the optimal output sequence
and more advanced decoding methods such as Prefix Search Decoding or Constrained
Decoding via beam search and a language model (Graves 2012, Section 7.5) were
developed.
Even if the name of the CTC indicates its special design for temporal sequence
classification tasks, it does not necessarily require a RNN architecture and can also

14The trick of setting up a recursion reduces the time complexity from O(TL′T ) to O(TL′2).
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be used with other architectures networks such a CNNs (Gao et al. 2017). The
collapsing of the label sequence allows the CTC to handle unsegmented sequences,
but it loses the information about the exact location where the label appeared in
the input sequence, and thus may be unsuitable for certain tasks. A nice overview
on the CTC and its relation to HMMs and Encoder-Decoder Models can be found
in Hannun 2017.

2.5.8 Multi-Task Loss

Sometimes it may be desirable to fulfill multiple objectives at the same time. The
easiest way to accomplish this and tradeoff between the objectives is a linear com-
bination of multiple loss functions, as described in (2.48).

L = λ1L1 + λ2L2 + . . . (2.48)

The constants λ1, λ2, . . . are hyperparameters to control the balance among the
different loss terms. It is also common that this type of multi-task loss appears in
form of a convex combination, where λi ≥ 0 and

∑
λi = 1.

2.6 Network Architectures

Depth, in sense of the number of layers in a FFNNs, is essential for learning rich
feature hierarchies and making the computation of the output compositional15.
This insight, combined with parallel computing on consumer GPUs and various
efficient training techniques (Section 2.2) led to the development of increasingly
deeper network architectures and a major success in almost all areas of machine
learning. Especially the application of Deep Convolutional Neural Network (DCNN)
caused rapid progress in the field of computer vision as well as a huge "Deep-Learning
Hype" in the tech industry.
The aim of this section is to introduce some historically important and often refer-
enced network architectures and their underlying ideas. A more quantitative com-
parison of different architectures can be found in Canziani et al. 2016.
In general, the traditional feed forward convolution architecture for classification is
a stack of some Conv->ReLU->Conv->ReLU->MaxPool-> blocks, followed by some
FC->ReLU-> and a final FC->Softmax->. Without the softmax block at the end,
this basic architecture can also be used for regression tasks. The part after the
convolutional blocks is often referred to as classification or regression head.

15Even though the universal approximation theorem (Cybenko 1989; Hornik 1991) states, in
theory, that a single hidden layer with enough units can approximate any possible function with
arbitrary small error.
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Fig. 2.9: Network Architectures

LeNet (LeCun et al. 1998) was the first successful application of CNN in the
90s. The architecture used two convolutional layers each followed by an average
pooling layer and two final FC layers. The activation functions were sigmoid and
tanh. RBFs were used to produce an error measure. The model was trained on the
MNIST16 dataset and used for reading zip codes, handwritten digits, etc.

16MNIST dataset of handwritten digits (60k for training, 10k for testing) http://yann.lecun.
com/exdb/mnist
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AlexNet (Krizhevsky et al. 2012) was the first deep architecture. It received much
attention after winning the ILSVRC challenge 2012 with a large margin (top 5 error
of 16% compared to the runner-up with 26%). The architecture of AlexNet (shown
in Figure 2.9a) was similar to LeNet, but used ReLU as activations, Dropout for
regularization and also the input sizes (227x227) as well as the learned features were
much larger. AlexNet was also the first architecture that stacked more than one
convolutional layer directly on top of each other. The implementation was done
for GPU, what came with an enormous training speedup (compared to CPU). The
original architecture was split into two sub-networks, which allowed the model to be
trained on 2 GPUs and reduced the top-1 and top-5 error rate, compared to the 1
GPU version with the half of the parameters, by further 1.7 respectively 1.2 percent
points. The model was trained with data augmentation on the ImageNet dataset
for 5 to 6 days on two NVIDIA GTX 580 3GB GPUs.

ZFNet (Zeiler and Fergus 2013b) was the winner of ILSVRC challenge 2013.
ZFNet (short for Zeiler & Fergus Net) improvement AlexNet by tweaking some
hyperparameters, in particular by reducing the filter size and stride of the first layer
from 11x11/4 to 7x7/2 and increased the number of filters in the last three convo-
lutional layers from 384, 384, 256 to 512, 1024, 512. This reduced the number of
trainable parameters and improved the overall recognition accuracy.

VGGNet (Simonyan and Zisserman 2014) was introduced by Visual Graphics
Group at Oxford, hence VGG. It was the runner-up in the ILSVRC challenge 2014
and showed that dept is critical for performance. The architecture is quite straight-
forward and contains only blocks of 3x3 convolution and 2x2 max pooling layers
followed by a classification head. VGGNet models are in general hard to train and
take relatively long to evaluate due to the many parameters (140M). Most of them
are in the first FC layer, but it was later found out that the layer can be removed
without loosing the performance of the architecture. In the original paper, the au-
thors made experiments with different depths, VGG-16 (Figure 2.9b) for instance
contains 16 convolutional and FC layers. They used pre-trained parameters of shal-
lower variants to initialize the deeper ones. VGG-16/19 models trained on ImageNet
are still often used for transfer learning.

Inception (Szegedy et al. 2014) is a family of architectures with similar structure,
starting with the 22-layer GoogLeNet as winner of the ILSVRC challenge 2014. The
biggest innovation in the Inception architecture was the introduction of Inception
Blocks, as shown in Figure 2.9d. The idea behind Inception Blocks is to do multiple
convolutions with different kernel sizes in parallel and concatenate their outputs. To
make that work properly, the convolutional and pooling layers must have padding
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same and 1x1 convolutions are required to keep the number of features and the asso-
ciated computation cost low. The architecture itself is basically a stack of inception
blocks and max pooling layers, where some topmost layers have their own classifica-
tion heads that contribute additional error signals and help the model to converge
faster. Also, average pooling before the FC layers in the head seem not to affect
the performance. All these changes together reduce the number of parameters in
the network dramatically (from 60M in AlexNet to 4M) and, compared to VGGNet,
make the model much easier to train. Later publications (Szegedy et al. 2016, 2015)
improved the architecture and developed several variants of the original inception
block.

ResNet (He et al. 2015a) was the winner of ILSVRC competition 2015. It utilizes
skip connections in form of Residual Blocks, shown in Figure 2.9c, and make heavy
use of batch normalization. The whole architecture is a stack of residual blocks with
appropriate stride and pooling. The 152-layer ResNet architecture has only one FC
layer at the end and lower complexity then VGG-16/19. Its name, ResNet, comes
from the original idea, that it is hard to learn a mapping directly, so take the identity
(skip connection) and only try to learn the "residual". Later, the authors studied
variants of the original residual block (He et al. 2016) and successfully trained a
1001-layer network on CIFAR-10 (4.62% error rate). ResNet models trained on
ImageNet are the default choice for transfer learning today.

DenseNet (Huang et al. 2016a) is a feed forward convolutional architecture that
excessively makes use of skip connections. Therefore, Dense Blocks were introduced
as shown in Figure 5.2 (gray box). They contain multiple Conv->BN->ReLU-> blocks
with all possible connections to skip them. 1x1 convolutions are used to keep the
number of features feasible. The complexity of the blocks is primarily controlled by a
single hyperparameter called the growth rate. More precisely, the growth rate is the
increase in the number of features after each convolutional layer in a Dense Block.
The skip connections allow the DenseNet models to reuse features from other layers
and overcome the vanishing gradient problem and thus, the models can be deep,
have few parameters and fast convergence. In comparison to ResNet on CIFAR-10,
DenseNet showed better results with less parameters. The main disadvantage of
DenseNet compared to other architectures is that it requires an enormous amount
of memory, especially during training. A more detailed discussion of this problem
is contained in the experiments Chapter 6.

Xception (Chollet 2016) stands for "extreme inception". It literally takes the
concept of Inception Blocks to the extreme by introducing depth-wise separable
convolutions. Xception showed slightly better results compared to Inception v3 and
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the idea, that cross-channels correlations and spatial correlations in the feature maps
of CNNs can be entirely decoupled, is now known as the "inception hypothesis".
The concept of depth-wise separable convolution has been quickly adopted as basic
building block in many other architectures (Howard et al. 2017; Iandola et al. 2016;
Zhang et al. 2017).

MobileNet (Howard et al. 2017) builds on depth-wise separable convolutions as
introduced in Xception, resulting in much smaller models with fewer parameters.
The architecture is also designed to easily trade off between accuracy and compu-
tation cost, making it a suitable choice for applications on mobile devices. The
MobileNet architecture has been further improved and was applied to object detec-
tion and semantic segmentation (Sandler et al. 2018).

2.7 Transfer Learning

The training of large models in a supervised fashion is time-consuming and requires a
large amount of labeled data, which is often not available for real world applications.
That’s where transfer learning comes into play.
Its basic idea is to train a model on a task TS for which a large training set DS is
available and then reuse the model for further training on a second task TT for which
only a much smaller training set DT is available. The subscript S and T stand for
source and target, thus the knowledge is transferred from the source to the target
domain.
In the context of computer vision and DCNN, there are practically two common
scenarios of how transfer learning is performed. They both start with a model
that is trained on a large dataset DS like ImageNet17 (Russakovsky et al. 2014)
for performing a classification task TS. This pre-trained model functions as feature
extractor, which has learned a rich hierarchy of features, starting from low-level
feature (e.g. edges or color blobs) in its first convolutional layer to high-level features
(e.g. cat faces or cars) in the last convolutional layer, before FC and a final softmax
layer are attached for classification. The next step is to remove the classification
head (FC and softmax) and add a new one that should conduct classification or
regression for TT .
The first scenario that can be applied is to keep the parameters of the convolutional
layers fixed initialize the head randomly and thus train only the new head on DT .
This can also be done by considering the feature extractor and the classifier/regressor
(in the simplest case a SVM) as separate models and using the feature extractor as
a static function.

17The ImageNet dataset contains more than 14M images and 1k categories.
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The second scenario is fine-tuning. Therefore, the new head is also randomly initial-
ized, but none or only the first convolutional layers are fixed. The training on DT is
then performed with a relatively small learning rate, allowing the network to adjust
the feature maps to the new task without destroying too much of the pre-trained
features. How well fine-tuning works, depends primarily on how similar the two
tasks are and how well DT represents the true data distribution. If DT is too small
and fine-tuning leads to large overfitting, then the first scenario is the better choice.
Transfer learning in general is its own research area, that is closely related to Multi-
Task, Few-Shot and Semi-Supervised Learning.

2.8 Interpretability

In general, a model in form of a function approximator trained via supervised learn-
ing does not guarantee that it reflects causal relationships and the training objective
may be a weak surrogate for the real-world engineering goal.
The question that arises now is that of interpretability, one might want to see what
is going on in a model and understand when and why it makes mistakes.
Unfortunately, there is no formal technical definition of interpretability and the
topic involves ethical and philosophical questions (Lipton 2016). Often, however, a
distinction is made between transparent and black-box models. Transparent models
are typically simple models that can be simulated by a human brain, and black-box
models are typically models that can not match or surpass our abilities on complex
tasks.
ANNs are often considered as black-box models due to the fact that they are high-
dimensional constructs that are not directly visually accessible to humans, which is
not entirely the case, especially for CNNs with their hierarchical feature structure.
Good visualization concepts have been devised, which will now be considered in
more detail.
A few simple visualization techniques exist that can be applied to ANNs in general.
For instance, computing the loss for all samples in the test set to see which are
the easy ones and which are the hard ones, or recording the activation of a certain
unit to see which samples it responds to. To get an idea of what a certain layer
has learned, one may record the activation of the layer for all samples and apply k-
nearest neighbors based on the proximity in the space learned by the model. Another
method for high-dimensional data in general is t-SNE (Maaten and Hinton 2008),
it visualizes high-dimensional data in a 2D plane while preserving some similarity
metric.
Most visualization methods for CNNs either render gradients as an image (Simonyan
et al. 2013), alter the input image via GD to strengthen the activation of a certain
unit selected from a hidden layer (Mordvintsev et al. 2015) or invert the convolution
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operation of the network (Bojarski et al. 2016; Dosovitskiy and Brox 2016; Zeiler
and Fergus 2013b; Zeiler et al. 2010).
Directly visualizing feature maps may be interesting for small networks, but is un-
suitable for large ones. However, attention mechanisms (Xu et al. 2015b) usually
provide saliency maps that can be displayed to see on which parts of an image the
model is focusing on.
Also, adversarial samples (Nguyen et al. 2015) reveal a lot about a model, especially
its weaknesses.
Last but not least, theoretical approaches, based on the idea of information bottle-
necks (Shwartz-Ziv and Tishby 2017) or local linearisation (Balestriero and Baraniuk
2017) may give valuable insights.

2.9 Deep Learning Frameworks

The success story of DNN goes along with the development of powerful open source
DL frameworks. They are practically all written in C/C++ and utilize CUDA18.
Most of them are available for the major OSs (i.e. Linux, MacOS, Window) and
provide Python bindings to leverage the scientific Python stack with its libraries
(e.g. NumPy, SciPy, Pandas, SymPy etc.). They all support convolutional layers
as well as recurrent layers and implement a version of Automatic Differentiation
(Baydin et al. 2015) to perform backpropagation. In this section, some popular and
historically influential frameworks are presented, but it has to be mentioned that
the list is far from being complete and permanently new ones are coming up.

Caffe19 (Jia et al. 2014) is well-known and was one of the first DL libraries. It
was developed from the Berkeley Vision and Learning Center (BVLC) as a faster
C/C++ port of a Matlab based convolutional network implementation. Caffe’s
strengths were, that it came with implementations of common layer functions (e.g.
Conv, FC...), out of the box GPU support and interfaces for Python and MATLAB.
With the Caffe Model Zoo, many pre-trained models are available for fine-tuning,
and it is not uncommon to port them to other frameworks. One of Caffe’s downsides
is that it has relatively many dependencies on other libraries and it is not always
straightforward to setup. It also comes with rather poor documentation. Since,
Caffe was intended for computer vision, it is not a general purpose framework and
the implementation of new features have to be done in C++ and CUDA. It also
lacks of auto-differentiation and one has to define the full forward, backward and
gradient update procedure for a new layer. For new projects building on Caffe, it is
common practice to fork the original source code and modify it according the needs,

18CUDA is Nvidia’s general purpose computing platform and API for CUDA-enabled GPUs.
19http://caffe.berkeleyvision.org
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resulting in more then 14k forks on GitHub. In 2017, Facebook released Caffe220

as successor of Caffe. It is intended for production environments and claims to be
more scalable and light-weight.

Theano21 (Bastien et al. 2012) was the first widely used and first with proper auto-
differentiation. It is written in Python and more a low level library for symbolic
computation. It can handle multidimensional arrays like NumPy and applies the
concept of a computation graph, that has to be defined, gets optimized, compiled and
evaluated as mathematical expressions. The compiler approach makes the models
sometimes hard to debug and it has only single GPU support, but many other high
level deep learning frameworks, such as Keras, Lasagne and Blocks build on top of
it. In September 2017 Yoshua Bengio announced that the development of Theano
will stop after version 1.0 and in favor of other frameworks. It was primary intended
and used for research.

Torch22 (Collobert et al. 2002) is like Theano, it has its origin in academia and
gained a large open source community. It was originally started at IDIAP (Switzer-
land), continued at NEC Laboratories America, later adopted by New York Univer-
sity and DeepMind2324. Today it is maintained by Google, Facebook and Twitter.
The goal of Torch is it to be portable, fast, extensible and easy to use. Therefore it
is written in C, uses cuDNN, Nvidia’s library to optimize CUDA for ANN, and pro-
vides an interface to the scripting language Lua via LuaJIT. Torch supports neural
networks as well as energy based models, can import Caffe models and was ported
to embedded systems (iOS, Android and FPGA).

Tensorflow25 (Abadi et al. 2016) is powered by Google and was the first DL
library intended for engineering. It is similar to Theano and comes with bindings for
Python, C++, Haskell, Java, Go, and Rust, but Python is by far the most used. The
main focus of Tensorflow is on scalability and it supports multiple CPUs, GPUs and
TPU, an ASIC developed by Google specific for ANNs. Like Theano, Tensorflow
follows the compiler approach and has a static computation graph. Tensorflow
uses cuDNN and multiple high level Tensorflow wrappers exits (TFlearn, Keras,
TF-Slim, TensorLayer). To make model debugging easier, a suit of visualization
tools, called TensorBoard, is available. Since version 1.6 Tensorflow is shipped with
Tensorflow Lite, a more light-weight version of the library intended for performing

20https://caffe2.ai
21http://deeplearning.net/software/theano
22http://torch.ch
23https://github.com/torch/torch7/blob/master/COPYRIGHT.txt
24In 2014, DeepMind was acquired by Google.
25https://www.tensorflow.org
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inference on embedded devices. Tensorflow is probably the framework with the
largest community these today.

Deeplearning4j26 was the first commercial oriented open source DL library and
is supported by the startup Skymind. Deeplearning4j’s goal is it to bring distributed
deep learning to production environments. Therefore, Deeplearning4j was written
for Java and other JVM languages. The JVM lets it run on various platforms and
opens it to the Java ecosystem. It can also get integrated on top of Big Data tools
such as Apache Hadoop and Apache Spark. In addition to neural networks, deep
belief nets and many other types of models are available. The models from most
major frameworks can be imported and a Python API is provided via Keras.

MXNet27 is developed by the Apache Software Foundation and gets more and
more popularity. It is probably the framework with the largest language-support
(officially: C++, Python, Julia, Matlab, JavaScript, Go, R, Scala, Perl, Wolfram
Language). It scales very well, works with multiple GPUs and suits for enterprise.
Amazon has chosen MXNet as its reference library for DL. Amazon, Microsoft
and Facebook developed the Open Neural Network Exchange (ONNX) format28 for
deep learning models, which got early adopted by MXNet. In addition to industry,
MXNet also receives strong support from research institutes, such as MIT or the
University of Washington. NXNet supports both imperative and symbolic program-
ming, and it provides an efficient way to deploy trained models for inference on
mobile (Android and iOS) and IoT devices.

Microsoft Cognitive Toolkit,29 previously known as Computational
Computational Network Toolkit (CNTK) is open source and used in various
commercial Microsoft products such as Skype, Cortana, Bing and Xbox. It was first
released in January 201630 and is available for Linux and Windows OSs. The focus
of CNTK is on distributed, multi-GPU computation for DL and it is optimized for
efficient resource utilization. Definition, training and evaluation of models can be
done in Python, C++ or BrainScript, CNTK’s own model description language.
Inference can only also be done in C# and Java. Models for Reinforcement Learning
or Generative Adversarial Networks (GANs) can be implemented relatively easy in
CNTK.

26https://deeplearning4j.org
27https://mxnet.apache.org
28https://github.com/onnx/onnx
29https://www.microsoft.com/en-us/cognitive-toolkit
30https://github.com/Microsoft/CNTK
31https://keras.io
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Keras31 is a popular high level DL library for Python. It is primarily developed
by François Chollet32, to simplify the creation and evaluation of neural networks,
what can be quiet complex when it is done with low level libraries. Keras acts as a
wrapper around other DL libraries. Backends are currently available for Tensorflow,
Theano, CNTK and MXNet. Keras provide basic building blocks such as layers, loss
functions, optimizers and tools to make it easier to work with image and text data.
It is lightweight, easy to use and comes with good documentation. With Tensorflow
version 1.4, Keras has been integrated as official high level API in Tensorflow.

PyTorch33 (Paszke et al. 2017) is Torch with a loose Python port of its Lua inter-
face. As a framework PyTorch is fairly new and gets increasingly popular due to its
concept of a dynamic computation graph. A dynamic computation graph is actually
not a new idea (Chainer34), but compared to the compiler approach of Theano and
Tensorflow, it can be seen as the JIT approach that allows imperative program-
ing. Therefore, PyTorch has a similar API as NumPy, combined with AutoGrad
and GPU acceleration. Tensors can be easily moved between CPU and GPU, and
computation is performed instantly, making debugging much easier and PyTorch a
good choice for research. It is developed by Facebook, but also used by many other
tech companies such as Twitter and Nvidia, and Uber’s probabilistic programming
library Pyro35 is build on top of PyTorch.

32François Chollet is also the creator of the Xception architecture.
33http://pytorch.org
34https://chainer.org
35http://pyro.ai
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Chapter 3

Object Detection

Most state-of-the-art scene text recognition systems rely on efficient CNN-based
approaches to generic object detection. Therefore, this section will give a brief
overview on recent developments in object detection.

3.1 Terminology

Fig. 3.1: Comparison between image classification, object detection and instance
segmentation1

To clarify the basic terminology, image classification is the most basic task, where
the model sees images, each contains one object, and has to output the correct one of
several predefined classes (e.g. ’cat’ or ’dog’). Object localization is about estimating
the position of a object within an given image. The combination of classification and
localization is called object detection. The fact that multiple instances of each class
can appear in the same image makes detection a much harder problem compared to
classification and localization on their own. Segmentation is the task of partitioning
a image into several parts. Each pixel gets classified without understanding what
the parts represent. For semantic segmentation, the image is partitioned into se-
mantically meaningful parts and each part is classified. The problem with semantic

1Image source Ouaknine 2018
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segmentation is that it can not distinguish among multiple objects of the same class.
To solve this problem, it requires what is called instance segmentation.

3.2 Datasets for Object Detection

The supervised training of large CNNs for object detection requires a huge amount
of labeled training data, but annotating large amounts of image data with bounding
boxes or even masks for instance segmentation is a rater expensive undertaking.
Private companies normally do not want to freely give away their investment, and
universities do not have that many resources. Consequently, training datasets for
object detection were always rare.
This section gives an brief overview on freely available and often used datasets.

Datasets Year Classes Images Objects/Image

Pascal VOC 2007 20 10k 2.5
Pascal VOC 2012 20 12k 2.4
Oxford-IIIT Pet 2012 37 7k 1.0
ImageNet Detection 2014 200 450k 1.1
MS-COCO 2014 80 120k 7.2
KITTI Vision 2014 3 7k

Tab. 3.1: Datasets for object detection, the number of images refer to the training
plus validation set

The Pascal VOC dataset (Everingham et al. 2010)2 was created for the VOC (Visual
Object Classes) challenges and is still one of the most often used datasets for training
and benchmarking. It contains 20 different object classes of persons, animals, vehicle
and everyday objects. The version released in 2012 contains 11,530 images for
training and validation, including all images from the 2007 version. All images
come with bounding box annotations and segmentation maps.
The MS-COCO dataset (Lin et al. 2014)3 was annotated at Microsoft and its name
stands for Common Object in Context. It contains 80 classes, including the 20 Pascal
VOC classes and also provides bounding boxes and segmentation maps. COCO is
roughly 10 times larger then Pascal VOC, but the objects are also more difficult to
detect.
ImageNet (Russakovsky et al. 2014) is most known as the large dataset with 1.4
million images and objects in 1,000 categories, that is used in the ILSVRC4 Classifi-

2http://host.robots.ox.ac.uk/pascal/VOC
3https://cocodataset.org
4ImageNet Large Scale Visual Recognition Competition (ILSVRC)
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cation Challenge5. 450,000 of these 1.4 million images were annotated with bounding
boxes for objects in 200 different categories to serve as training data for the ILSVRC
Detection Challenge.
The Oxford-IIIT Pet dataset (Parkhi et al. 2012)6 contains 7349 image with one of
37 cat and dog breeds per image. Each image has ground truth in form of breed
annotation, head bounding box and a trimap segmentation of the pet.
The KITTI Vision dataset (Geiger et al. 2012)7 is an effort related to autonomous
driving, but it also contains 7.000 images with bounding box annotation for 3 classes
(’pedestrian’, ’car’, ’cyclist’).
Due to the rather small size of detection datasets, transfer learning (Section 2.7) is
established in practice to exploit trained classification models for object detection.

3.3 Evaluation Metrics

Evaluation metrics are used to assess the performance of object detection systems.
When object detection is considered on the basis of bounding boxes, the Jaccard
Index or Intersection over Union (IoU), as defined in (3.1), is the primary measure
on how many pixels of one bounding box A overlap with those of a second bounding
box B.

IoU(A,B) =
A ∩B
A ∪B

(3.1)

A detected bounding box is correctly detected and considered as True Positive (TP)
if the detected box has a sufficiently large overlap (e.g. IoU > 0.5) with the ground
truth bounding box and it was correctly classified. It is considered as False Positive
(FP) if it was detected, but no matching ground truth box exist. A ground truth
box that does not get detected at all is considered as False Negative (FN). Multiple
detections of the same object are taken as FP and only the detection with the highest
confidence is taken as TP.
Two metrics that are derived from this concept are precision and recall.

precision =
TP

TP + FP
(3.2)

recall =
TP

TP + FN
(3.3)

Where TP, FP and FN stand for the number of the corresponding cases. Precision
is a measure for how few false detections are made and recall is a measure for how
many actual objects are correctly detected. For the perfect detector, one may desire
the highest possible precision and recall of 1.0, but every real detection system has

5http://www.image-net.org/challenges/LSVRC
6http://www.robots.ox.ac.uk/~vgg/data/pets
7http://www.cvlibs.net/datasets/kitti/
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to make a tradeoff between precision and recall.
A metric that takes this tradeoff into account is the F-measure or F1-score (3.4). It
is the harmonic mean of precision and recall.

f-measure = 2
precision · recall
precision + recall

(3.4)

For the most detection approaches, the tradeoff between precision and recall can be
made by rejecting detections under a certain confidence threshold and the precision-
recall curve can be plotted for each class.
A more sophisticated performance metric that will now be introduced is the Average
Precision (AP). Theoretically, it is the the integral

∫ 1

0
p(r)dr under the precision-

recall curve, that is typically approximated by

AP =
K∑
k=1

p(k)∆r(k) (3.5)

Where K is the total number of detections, p(k) the precision at a cutoff of k detec-
tions (the k detections with the highest confidence) and ∆r(k) is the change in recall
between cutoff k − 1 and k. This definition is not always consistent in publications
and some authors use interpolated version of the AP. If maxk̃≥k p(k̃) is used instead
of p(k), which results in higher AP values, it is called the interpolated AP. Another
variant where the precision is sampled at 11 fix points 0.0, 0.1, . . . , 0.9, 1.0 is known
as 11-point interpolated AP.
However, the most commonly used metric for detection is the mean Average Pre-
cision (mAP). It is obtained by separately computing the AP for each class and
averaging them.

mAP =
1

|classes|
∑

c∈classes

AP(c) (3.6)

The value of the mAP is then typically denoted with "mAP@0.5" where "0.5"
means that the evaluation was done with an IoU threshold of 0.5. The computation
is performed with all samples in the test set.
Some benchmarks, as in the evaluation metrics for MS-COCO, also average over mul-
tiple IoU thresholds. This will be indicated, for instance, with "mAP@[.50:.05:.95]",
where 10 IoU thresholds from 0.5 to 0.95 were used.
Also, a two-dimensional confusion matrix may give useful insights on how good a
classifier works and which classes are frequently misclassified. One dimension of
the matrix represents the actual (ground truth) classes and the other the predicted
classes. The elements of the matrix are the number of ground truth elements of
one class detected as object of a certain class. In case of a perfect classifier, the
confusion matrix would be diagonal.
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3.4 CNN based Object Detectors

From a historical point of view, object detection is an old problem, that is classically
tackled with a sliding window approach. A fixed sized pattern or feature is compared
with the input image at each possible location, and after getting all the predictions,
some of them are discarded and some are merged. This is simple but inefficient,
especially for a high number of features and different window sizes. Another issue
with these approaches is that the features typically have to be engineered by hand.
The most notable of these efforts were, the Viola-Jones framework (Viola and Jones
2001), the combination of HOG feature pyramid with SVMs (Dalal and Triggs 2005)
and Deformable Part Modelss (DPMs) (Felzenszwalb et al. 2013). Viola-Jones uses
cascades of Haar-like features and AdaBoost to get an efficient ensemble of many
binary classifiers. It was also the first real-time face detector with application in
point-and-shoot cameras. The combination of a HOG feature pyramid with SVMs
as classifiers is superior to Viola-Jones in terms of AP, but also much slower. DPM
are the approach that came closest to today’s CNN-based detectors (Girshick et al.
2014). They consider each object as a deformed version of an ideal template and
use dynamic programming to optimize a graph that represents the relations between
the features. The problem with DPMs is that they still depend on HOG features.
CNNs revolutionized the sliding window approach due to two main properties. First,
they make it possible to learn the features, and second, they have an intrinsic ca-
pability to share and parallelize the computation. However, all the most successful
approaches that are currently available can be understood as extensions of image
classification models. Some relevant ones will now be discussed in more detail.

3.4.1 OverFeat

Krizhevsky et al. 2012 won with AlexNet not only the ILSVRC classification but
also the ILSVRC localization challenge 2012. However, since they never published
anything regarding localization, OverFeat (Sermanet et al. 2013) was the first publi-
cation related to efficient object detection with CNN. The architecture of OverFeat
was a optimized version of AlexNet (bigger model, more layers, smaller stride, 145M
parameters). The authors realized that the last FC layers of a classification network
can be converted into convolutional layers and that the resulting fully convolutional
network can handle inputs of different sizes. It also allows to perform the classi-
fication on different input locations while sharing the computation of overlapping
regions. The model was pre-trained for classification only and fine-tuned for classi-
fication and regression in one model. Due to its fully convolutional architecture, the
model can be evaluated at multiple scales. The bounding boxes of all locations and
scales are accumulated instead of suppressing them, resulting in an increased detec-
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tion performance. OverFeat was the winner of the ILSVRC localization challenge
2013 and later gave rise to many other papers on learning bounding boxes.

3.4.2 R-CNN

R-CNN (Girshick et al. 2013) and its successors are one of the most impactful ad-
vancements in computer vision8. The name R-CNN stands for Region and Convo-
lutional Neural Network, and that is literally what it does. It uses a region proposal
method, called Selective Search9 (Uijlings et al. 2013), that generates 2000 different
regions with a high probability of containing an object. The image regions are then
’warped’ into images of fixed size and fed into a CNN (AlexNet in this case). The so
extracted feature vector is then used as input for a set of linear SVMs (Section 2.5.4)
that are trained for the individual classes. To obtain more accurate coordinates, the
same feature vector is also fed into a bounding box regressor. After performing the
classification and regression for each region, Non Maximum Suppression (NMS)10

is used to suppress bounding boxes that have a significant overlap with each other.
R-CNN was intuitive but also very slow and took a lot of disk space.

Fig. 3.2: Selective Search bottom-up segmentation starts with tiny segments and in-
crementally merges (from left to right) them by similarity to obtain region proposals
of different size (Uijlings et al. 2013).

8According to Google Scholar, the original paper has been cited more than 5000 times.
9Selective Search does bottom-up segmentation and merges the segments greedily by utilizing

some similarity measures. The segments are then converted to boxes.
10Bounding boxes of the same class and with IoU > 0.5 are discarded so that only the instances

with the highest confidence will remain.
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Fig. 3.3: Evolution of the R-CNN detector family (Weng 2017)

3.4.3 Fast R-CNN

Fast R-CNN (Girshick 2015) solved the speed issue of R-CNN by swapping the
order of generating region proposals and running the CNN. Therefore, the region
proposals are generated from the last feature map, rather then from the original
image. The authors introduced a Region of Interest (RoI) Pooling layer after the
last convolution, which performs the warping and cropping of the RoIs into an fixed
size input that can be handled by the subsequent FC layers. They also replaced
the SVMs with a single softmax layer that utilizes the NN for classification instead
of training separate SVM models for each class. Since the RoI Pooling layer is a
differentiable operation, the whole FFNN can be trained with a multi-task loss for
RoI classification and bounding box regression in an end-to-end manner. The CNN
computation is shared between all the RoIs and only one forward/backward pass
is required per image. The proposals/bounding boxes are projected on the feature
maps (intuitive by consideration of the receptive fields) and thus the down sampling
from a large input resolution to a rather small feature map leads to quantization
errors and misalignments of the bounding boxes in the input image. A bigger issue
with Fast R-CNN is that it still requires Selective Search, which is now the bottleneck
in the inference pipeline. The RoI Pooling layer is a special case of Spatial Pyramid
Pooling layer (He et al. 2014).

3.4.4 Faster R-CNN

Faster R-CNN (Ren et al. 2015) has the same architecture as Fast R-CNN, but it
gets rid of Selective Search by replacing it with a CNN, the so called Region Proposal
Network (RPN). The RPN is attached to the last convolutional layer and outputs
’objectness’ scores and bounding box regression for multiple anchor boxes at each
location of a so called anchor feature map that is obtained by simply applying a 3x3
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convolution on the input of the RPN. Anchor boxes (sometimes also default or prior
boxes) are a prior in form of manually defined reference boxes with different scales
and aspect ratios that help the bounding box regression easier fit to the objects. The
output of the RPN is then filtered by the objectness score, overlapping boxes are
eliminated by NMS and the remaining bounding boxes are used as region proposals
for the RoI Pooling layer. The RPN serves as attention mechanism for the detection,
but since the derivatives of the RoI pooling layer w.r.t. the bounding box coordinates
are not easy to get, the whole system is a bit tricky to train. One way to handle
this is to start with a model pre-trained on ImageNet and then alternately train
the RPN, use the region proposals to train the detector, train the RPN and so on.
The mini-batch arise from a single image by randomly sampling 256 anchors. To
prevent the negative samples from dominating the positive ones, the ratio between
the positive and negative is kept close to one. Faster R-CNN takes 0.2 seconds per
image (compared to R-CNN with 60 sec/img and Fast R-CNN with 2 sec/img) and
has become the default choice for most detection tasks today.

3.4.5 Mask R-CNN

Mask R-CNN (He et al. 2017) makes instance segmentation possible. It essentially
takes the architecture of Faster R-CNN and combines it with a Fully Convolutional
Network for semantic segmentation (Long et al. 2014)11. Therefore, a third branch,
that performs semantic segmentation for each RoI, was added next to the classifi-
cation and bounding box regression branch. The authors also addressed the issue
with the quantization errors, that results from the RoI Pooling layer and replaced it
with a modified version that they call RoI Align. It takes region proposals in form
of floating numbers instead of integers and applies bilinear interpolation to avoid
the information loss. A third major change in Mask R-CNN was the decoupling of
the class prediction. Instead of the softmax layer, they used a binary classifier for
each individual class. The advantage is now, that the different classes are no longer
in competition with each other (e.g. the instances of class ’woman’ are also con-
tained in class ’person’). Both, the change from RoI Pooling to RoI Align and the
change from softmax to sigmoid, increased the AP significantly. A further increase
in terms of AP came due to the change of the feature extractor from VVG-16 to
ResNet-101/ResNeXt-101 (Xie et al. 2016).

11FCN takes a image classification model, attaches a deconvolution or transposed convolution
layer (Dumoulin and Visin 2016, Chapter 4) and trains it for classifying each pixel of the input
image.
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Fig. 3.4: Prior boxes defined on different feature maps in the SSD architecture; The
prior, anchor or default boxes are defined at each of the locations (red dots), but for
clarity, only the boxes at the first location are drawn.

3.4.6 R-FCN

R-FCN (Dai et al. 2016) builds on Faster R-CNN. It maximizes the sharing of
the computation by getting rid of the RoI-wise sub-networks and making the whole
network fully convolutional. The authors do this by introducing position-sensitive
score maps and attaching a Position-sensitive RoI Pooling layer on top of them. Each
RoI is divided into a k×k grid and elements are considered as ’bins’ or sub-regions.
For the classification part, (C + 1)k2 score maps are predicted from the last feature
map (C classes plus the background class). Each score map is associated with one
sub-region of a class, or in other words, they are convolutional feature maps that
will be trained to recognize certain parts of an object class (e.g. the top-right of a
cat face). The Position-sensitive RoI Pooling layer accumulates the scores from the
subregion on the associated score map and divides it by number of pixels in the sub-
region (average pooling, but max pooling is also possible). The scores of all bins in
the RoI are then averaged per class and a softmax is applied to train it with the CE
loss. The regression part is handled in a similar way, 4k2 score maps are predicted,
average pooling for each bin is performed and the average over the bins results in 4
values for fitting the bounding box. The concept of sub-regions is able to address the
dilemma of increasing translation invariance for image classification vs minimizing
translation variance for object detection. Location variance by proposing different
object regions and location invariance by having each region proposal refer to the
same bank of score maps. The architecture also uses ResNet as feature extractor.
During training, Online Hard Example Mining (OHEM)12 (Shrivastava et al. 2016) is
used and in the test case NMS is applied. One issue with R-FCN is that the number
of score maps increases with the number of classes, this is addressed by R-FCN-
3000 (Singh et al. 2017). Later, the authors of R-FCN published about Deformable
Convolution and combined the idea of sub-regions with that of Deformable RoI

12For OHEM the per-RoI classification loss is calculated and only the samples with the highest
loss are used for backpropagation.
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Pooling (Dai et al. 2017).
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Fig. 3.5: The SSD architecture with its backbone or feature extractor on the left
and its prediction paths to the right
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3.4.7 SSD

SSD (Liu et al. 2016a) stands for Single Shot MultiBox Detector and is an approach
that does not require region proposals at all. It does a dense prediction of bounding
boxes over the entire image which then get filtered by NMS. The architecture, as
shown in Figure 3.5, builds on a pre-trained VGG-16 model, where the first FC
layer is converted into a convolutional layer and the rest of the classification head is
replaced by a stack of new convolutions. A set of prior boxes with different aspect
ratio and scale is defined for each spatial location on several feature maps (e.g. for
feature map size 32x32, 8x8, 2x2 as drawn in Figure 3.4). This is the same idea as
with the anchor boxes in Faster R-CNN and rather intuitive since the elements of
the feature map at one spacial location are all connected to the input pixels in the
receptive of this units. Classification and offset regression for all default boxes is
done by convolutions over the feature maps (see Figure 3.5). To obtain a model that
is robust to variations in object size and shape, the pre-trained model is finetuned
with data augmentation. Training requires local ground truth. Thus a ground truth
bounding box is associated with a prior box if their IoU is larger than 0.5. Prior
boxes without associated ground truth are of class ’background’. The loss is a multi-
task loss L = Lcls + λLreg. Where the first term Lcls is the sum over the CE losses
for classifying the boxes selected by hard negative mining13 with neg/pos ratio not
larger then 3. The second term Lreg is the sum over the Smooth L1 Losses for the
bounding box regression of the true positive samples. At test time, the output of the
network is the aggregation of all the predictions from the different feature maps and
is subsequently filtered by confidence threshold and NMS. The benefits of SSD come
from its simple and fully convolutional architecture. It is trained end-to-end, it has
a high detection speed with comparable AP, and it can process inputs with different
sizes. One issue with SSD is that it relies on a pre-trained model with features
that are not specific for the detection task. DSOD (Shen et al. 2017) adresses this
by replacing the VGG-16 backbone with DenseNet (Section 2.6). This results in a
model that can be trained from scratch, has much less parameters and achieve a
higher AP. Another issue is that SSD has problems with detecting small objects.
This is most likely caused by insufficient contextual information. Approaches that
try to involve more context (Cao et al. 2017; Chen et al. 2017; Fu et al. 2017; Lee
et al. 2017; Li and Zhou 2017) typically improve the AP on PASCAL VOC by less
then 2 percent points. BlitzNet (Dvornik et al. 2017) extends SSD with semantic
segmentation.

13Hard negative mining is similar to OHEM, it prevents the negative class (’background’) from
dominating the positive ones by only selecting the negative samples with the highest classification
loss.
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3.4.8 YOLO

You Only Look Once (YOLO) is the first of a series of single shot detectors and was
the inspiration for SSD. It has a rather simple architecture and is mainly optimized
for speed. Since an extensive discussion of YOLO would not introduce that many
new ideas at this place, the reader is referred to the original papers (Redmon et al.
2015; Redmon and Farhadi 2016, 2018).
The TensorFlow detection API14 provides implementations of various detectors (e.g.
SSD with MobileNet or Inception v2, R-FCN with ResNet-101, Faster R-CNN with
ResNet-101 or Inception ResNet v2) that can be easily applied for practical use. A
detailed comparison of Faster R-CNN, R-FCN and SSD was elaborated by Huang et
al. 2016b. Also, the object detectors presented here can be modified relatively easily
for custom applications. Some of them are human pose estimation (Güler et al.
2018), Face detection (Wang et al. 2017b), 3D bounding box estimation (Mousavian
et al. 2016; Simon et al. 2018) and of course text detection, which will be extensively
discussed in the next section.

14https://github.com/tensorflow/models/tree/master/research/object_detection
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Chapter 4

ANN-based Text Spotting

Text in general is an object or pattern produced by humans as explicit carrier of
high level semantics. It differs from generic objects, which generally have a well-
defined boundary and center, allowing it to infer the whole object from only a part
of it. Moreover, it is a sequence with variable length and tremendous geometrical
variations.
Text in natural scene images typically suffers from poor image quality and the text
instances vary heavily in scale, font and style. Scene text may also be arbitrarily
oriented, perspectively distorted or curved.
All these properties make scene text reading, a.k.a. text spotting, photo OCR or text
recognition in the wild, a unique and challenging task that requires the exploitation
of low-level geometric and high-level semantic features.
Approaches to the scene text reading problem usually consider it as at least two
sub-problems, text detection and text recognition.
Classical approaches prior to DLs typically had many intermediate stages, required
tedious parameter tuning, manually designed features and are highly application
specific.
Current state-of-the art ANN based approaches are far superior to these former
methods due to learned features and shared computation. They typically have no
intermediate stages, except final NMS or decoding, and are characterized by being
faster, more robust and more accurate.
Surveys on text detection and recognition can be found in Ye and Doermann 2015
and Zhu et al. 2016. However, this chapter will cover more recent ideas which are
not considered in these surveys. Section 4.1 will provide an overview of text related
datasets. Section 4.2 and 4.3 consider the text detection and recognition on their
own. The final Section 4.4 is about more holistic approaches that are end-to-end
trainable.
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4.1 Datasets for Text Detection and Recognition

The supervised training and evaluation of models for scene text detection and recog-
nition systems require large datasets.
Most of the available real-world datasets were provided in context of the Interna-
tional ICDAR1 Robust Reading Competition or are annotated Google Street View
images. However, the real-word datasets are not that large and annotating is expen-
sive. For this reason, synthetic data engines were developed for generating larger
training datasets with scene images containing highly realistic text instances. Syn-
thetic data may seem strange, but it works well for training and is a rather natural
approach, since text is a object produced exclusively by humans. Annotation is typ-
ically done via bounding boxes at character, word or line-level and the transcribed
character string. Datasets related to special cases, such as curved text, may also
provide segmentation maps to indicate the text areas.
The rest of this section provides a short overview on frequently used text-related
datasets.

ICDAR 2003 (Lucas et al. 2003) contains 251 full scene images with horizontal
text and 860 images of cropped words.
Wang et al. 2011 removed word images with non-alphanumeric characters or less
then three characters and defined a 50-word lexicon for each. In addition a 50k word
lexicon is available that consists of all lexicon words and words from the Hunspell
spell-checking dictionary 2.

ICDAR 2015 FST or ICDAR 20133 (Karatzas et al. 2013) contains 229 train-
ing and 233 testing images of Focused Scene Text. It inherits most of its samples
from the ICDAR 2003 dataset. All of them are real-world images showing text on
sign boards, books, posters or other objects (Figure A.1). The text instances are
English and horizontally aligned. The annotations are axis-aligned bounding boxes
and result in 1015 cropped word images. The dataset is widely adopted for text
detector performance and will be referred to as ICDAR 2013.

ICDAR 2015 IST4 (Karatzas et al. 2015) was provided for the ICDAR 2015
challenge 4 on Incidental Scene Text. It contains 1,000 training and 500 test images.
The images were acquired by using Google Glass without taking care of viewpoint,
positioning or image quality. Text instances may appear in any orientation and
with small size or low resolution (Figure A.2), making it much more difficult than

1Conference on Document Analysis and Recognition (ICDAR)
2http://hunspell.github.io
3http://rrc.cvc.uab.es/?ch=2&com=downloads
4http://rrc.cvc.uab.es/?ch=4&com=downloads
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ICDAR 2013. The complete dataset has 7,548 text instances with annotation in
form of quadrilaterals. It is often used for benchmarking and will be now referred
to as ICDAR 2015.

ICDAR 2017 MLT5 (Nayef et al. 2017) is intended for benchmarking the task
of Multi-Lingual scene Text detection and identification. It contains 7,200 training,
1,800 validation and 9,000 testing natural scene images with text in 6 different scripts
(Latin, Arabic, Bengala, Hangul, Hiragana, Katakana and Symbols). Annotations
are provided in form of quadrilaterals, script class and transcription (UTF-8 text).

COCO-Text6 (Veit et al. 2016) was created by annotating images from the MS
COCO dataset (Section 3.2). It contains 63,686 images (Figure A.3) with 173,589 la-
beled text regions and is thus two magnitudes larger than other scene text datasets.
Each text instance is annotated with an axis-aligned bounding box and three at-
tributes, machine printed or handwritten text, legible or illegible text and English
or non-English script. For legible text, the transcriptions is given. The authors have
chosen 20,000 samples as validation/test set and the rest for training. COCO-Text
is also used in the ICDAR 2017 Robust Reading Challenge on Text Localization,
Cropped Word Recognition and End-To-End Recognition. It is much more chal-
lenging dataset than ICDAR 2015 IST.

Synthetic Word7 (Jaderberg et al. 2014) is a dataset of 9M synthetic word images
covering 90k English words. The font for each word was randomly chosen from
a set of 1,400 different font types and their borders/shadows were rendered with
random width. The basic coloring was chosen from color samples obtained from k-
means clustering on natural images and image patches randomly sampled from the
ICDAR 2003 training dataset were used as background. Perspective transformations
were used to simulated projective distortion. Noise and blurring effects as well as
JPEG compression artifacts were added to make the images more realistic. All
images have a fixed height of 32 pixels and variable width.

SynthText8 (Gupta et al. 2016) contains 800k training images generated by using
a synthetic text engine. They were synthesized by blending natural images with ar-
tificially rendered text. Text with random font type, size and color is perspectively
placed at regions with uniform color and texture, taking into account the 3D scene
geometry. Each image has about ten word instances annotated with oriented char-
acter and word bounding boxes plus transcription. Example images are attached in

5http://rrc.cvc.uab.es/?ch=8&com=downloads
6https://vision.cornell.edu/se3/coco-text
7http://www.robots.ox.ac.uk/~vgg/data/text
8http://www.robots.ox.ac.uk/~vgg/data/scenetext
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Figure A.4.

MSRA-TD5009 (Cong Yao et al. 2012) was the first popular dataset with focus
on oriented text. It contains 500 high-resolution natural images, 300 for training
and 200 for testing, which were taken from indoor (office and mall) and outdoor
(street) scenes using a pocket camera. The text instances are either Chinese or
English and are annotated as rotated bounding boxes at line-level. Compared with
ICDAR 2003, MSRA-TD500 is more challenging due to higher variability in text
and more complex backgrounds.

Google FSNS10 (Smith et al. 2017) consisting of more than a million images of
French Street Name Signs cropped from Google Street View images. Each image
contains four views of the same street name sign and is annotated with a ground
truth text as it would appear on a map. The text instances at each sign can span
up to three lines and may suffer from blur, occlusion or low resolution. FSNS is also
used in the ICDAR 2017 Robust Reading Challenge on End-To-End Recognition.

SVT11 (Wang et al. 2011) stands for Street View Text. The dataset has 249 images
with 647 word instances collected from Google Street View. The images may suffer
from low resolution and unfavorable lighting conditions. Each image is associated
with a 50-word lexicon defined by Wang et al. 2011.

SVT-Perspective (Phan et al. 2013) contains 639 cropped testing images picked
from side-view snapshots in Google Street View which may have severe perspective
distortions.

CUTE8012 (Risnumawan et al. 2014) is intended for evaluating the performance
of curved text recognition. It contains 80 natural images with curved text, resulting
in 288 cropped word images.

IIIT 5k-word13 (Mishra et al. 2012) consists of 5k cropped word images harvested
from Google image search. They were obtained by querying words like billboards,
signboard, house numbers, house name plates or movie posters. The dataset is split
into 2k training and 3k test images. Each sample comes with ground truth text,
character-level bounding box, categorization into easy or hard and two lexicons, one

9http://www.iapr-tc11.org/mediawiki/index.php/MSRA_Text_Detection_500_
Database_(MSRA-TD500)

10http://rrc.cvc.uab.es/?ch=6&com=downloads
11http://www.iapr-tc11.org/mediawiki/index.php/The_Street_View_Text_Dataset
12http://cs-chan.com/downloads_CUTE80_dataset.html
13http://cvit.iiit.ac.in/projects/SceneTextUnderstanding/IIIT5K.html
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with 50-word and one with 1k-word. In addition, a overall lexicon with 500k words
is provided.

Total-Text14 (Ch’ng and Chan 2017) is a relatively new dataset. It contains 1555
images with text instances that are either horizontal, multi-oriented or curved. The
complete set is split into 1255 images for training and 300 images for testing and
text instances occur with 7.27 per image rather often. All of them come with ground
truth text, orientation type (’curved’, ’horizontal’, ’multi-oriented’ or ’dont care’),
polygon shaped bounding regions and segmentation masks at character and region
level.

4.2 Text Detection

Given an image, the objective of text detection is to obtain precise bounding boxes
or segmentation maps for all text instances in the image.
Bounding boxes are used to represent ground truth or detection results at char-
acter, word or line level. Single characters are often considered by bottom-up ap-
proaches that try to build connected components. Lines are primarily a suitable
representation for document processing. However, most of today’s scene text de-
tection systems and benchmarks rely on word-level bounding boxes. Methods that
can only detect horizontal text typically use axis-aligned bounding boxes which
are either parametrized by their center and size (x, y, w, h) or by two coordinates
(xmin, ymin, xmax, ymax). Other methods that can detect arbitrary oriented text work
with rotated bounding boxes which may be parametrized by the center, size and
orientation angle (x, y, w, h, θ), two base coordinates and the height (x1, y1, x2, y2, h)

or by the distance of the edges to a relative coordinate and the rotation angle
(t, b, l, r, θ). Another common representation are quadrilaterals in form of four corner
points (x1, y1, x2, y2, x3, y3, x4, y4) and may be a better representation for perspec-
tive text instances. Methods that produce segmentation maps typically post-process
them to obtain bounding boxes that can be used for benchmarking.
The metrics used to measure the performance of text detection systems are the same
as those for general object detectors (Section 3.3), but most often, precision (3.2),
recall (3.3) and f-measure (3.4) are the values that are compared.
In general, defining the problem by fitting word-level bounding boxes has its limita-
tions when it comes to languages which have no word representations (e.g. Chinese
or Thai). Moreover, it is also questionable how informative it is to measure the accu-
racy of the detector by how well it approximating the way human annotators create
bounding boxes around text, and these without considering how well a subsequent

14https://github.com/cs-chan/Total-Text-Dataset
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recognition stage would recognize the text.
Pre-DL approaches to the text detection problem typically work locally by seeking
text fragments via extremal region extraction and edge detection, followed by char-
acter, word or line-level candidate aggregation and false positive elimination. The
most of these methods are based on Stroke Width Transform (SWT) (Epshtein et al.
2010) or Maximally Stable Extremal Regions (MSER) (Neumann and Matas 2010),
but also HOG features were a popular tool at these time and have been proposed
in combination with the sliding window approach (Wang et al. 2011).
Starting in 2012, the first DL-based approaches to the text detection got the atten-
tion from the community. Wang et al. 2012 used a CNN in sliding window fashion to
detect text instances. Goodfellow et al. 2013a read house numbers in Google Street
View images.
All the most successful text detection methods from today are either modifications
of box-based object detectors like Faster R-CNN (Section 3.4.4) and SSD (Sec-
tion 3.4.7), rely on segmentation as proposed in FCN (Long et al. 2014) or are com-
binations of these approaches. Therefore, the subsequent sections (Section 4.2.1,
4.2.2 and 4.2.3) are about recent text detection concepts related to region proposal
networks, single shot detectors and segmentation. A more quantitative comparison
of these approaches can be found in Table 4.1.

4.2.1 Region Proposal-based

Region proposals and RoI-pooling are used by general object detectors (Section 3.4.2 -
3.4.5) to regress and classify axis-aligned bounding boxes. For text detection, it is
quite intuitive to try to modify these mechanisms to make them better fit arbitrary
oriented text instances with large and varying aspect ratio. Different approaches
related to this idea have been proposed.
Jaderberg et al. 2016 were inspired by R-CNN. They use Edge Boxes (Zitnick and
Dollár 2014) as region proposal method and Aggregate Channel Feature (Dollár et
al. 2014) to predict horizontal word-level bounding boxes. As in R-CNN, a regression
head is used to refine the proposals, but the classification is done via a random forest
classifier (Bosch et al. 2007) and proposals are filtered via NMS.
Tian et al. 2016 proposed a method for horizontal text line detection, the Con-
nectionist Text Proposal Network (CTPN). The idea emerged from the RPN in
Faster R-CNN. Anchors width different height are defined at each location on the
last convolutional layer of a VGG-16 model. A BLSTM is attached and the anchors
in each row are considered as a sequence. For each location or time-step in the
sequence, text/non-text scores, y-coordinates and side-refinements are predicted via
FC layers. The x-coordinates and widths of the anchors are fixed. The so obtained
proposals are subsequently filtered by threshold and NMS. Positive proposals are
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connected based on their horizontal distance and vertical overlap. The resulting con-
nected proposals are then merged into word-level bounding boxes and the estimated
values for the side-refinement are used to improve the left and right boundary. Zhu
et al. 2017 took up the idea of the vertical anchor mechanism and applied it with a
ResNet backbone.
Ma et al. 2017 modified Faster R-CNN to work with oriented region proposals and
produce text candidates in form of oriented bounding boxes. This is done by in-
troducing anchor boxes in 6 different orientations. Consequently the RPN and the
RoI-Pooling layer have to be changed into variants that can handle the rotation.
The RRPN now generates proposals with 5 geometric parameters (x, y, w, h, θ) and
the RRoI-Pooling layer pools the RRoIs to a fixed size output. Also, the calculation
of IoUs and the procedure for NMS are less trivial. Nevertheless, text candidates
with small or extremely large aspect ratio are still an issue.
Jiang et al. 2017 proposed R2CNN, which is another variant of Faster R-CNN that
can better cope with arbitrarily oriented text. Therefore, it first uses a RPN to
predict axis-aligned bounding boxes and subsequently pools the RoIs into three
different aspect ratios. These pooled feature maps are then concatenated and fed
into the first of two FC layers. The output of the second FC layer is then used
for text/non-text classification, axis-aligned bounding box refinement and, most
important, parameter estimation for an oriented bounding box. For IoUs calculation
and NMS, the method proposed by Ma et al. 2017 is adopted.

Model Precision Recall F-measure FPS

Yao et al. 2016 72.3 58.7 64.8 1.6

R2CNN 86.6 79.7 83.0 —

RRPN 84.0 77.0 80.3 —

CTPN VGG16 74.2 51.6 60.9 7.1

EAST PVANET2x MS 83.3 78.3 80.7 —

EAST PVANET2x 83.6 73.5 78.2 13.2

EAST VGG16 80.5 72.8 76.5 6.5

SegLink VGG16 73.1 76.8 74.9 —

TextBoxes++ VGG16 87.2 76.7 81.6 —

TextBoxes++ VGG16 MS 87.8 78.5 82.9 —

PixelLink VGG16 2s 85.5 82.0 83.7 3.0

PixelLink VGG16 4s 82.9 81.7 82.3 7.3

Tab. 4.1: Comparison of text detection approaches on the ICDAR 2015 dataset;
values are taken from the original papers, ’MS’ stands for multi-scale testing, ’2s’/’4s’
stands for different Conv layer from where the prediction is made, frame rate was
measured on Titan X GPU, except Yao et al. 2016 on K40m.
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4.2.2 Single Shot Detector-based

SSD and other single shot detectors have the advantage that they allow practically
arbitrary local predictions, as long as they are correlated with the content of the
receptive fields on which the prior boxes are defined. The intention to utilize this
for text detection led to various successful approaches in recent years. Some of them
are now presented to the reader.
Liao et al. 2016 proposed TextBoxes, an efficient detector for horizontal text. It is
actually the SSD (Figure 3.5) architecture with three minor changes. First, more
text specific default boxes with much larger aspect ratios (1,2,3,5,7 and 10) are used.
Second, to better cover the input image with default boxes, a second identical set
of default boxes is added with a vertical displacement. And third, irregular 1x5
convolution kernels are used within the prediction branches, which leads to wider
receptive fields and helps the model to better capture the horizontal text areas.
TextBoxes, as the first SSD-based approach, showed good results and is often cited.
Shi et al. 2017 utilized SSD in a connected component approach that they call
SegLink. The idea behind SegLink is to just detect segments of text (corresponding
to objects in SSD) and additionally predict confidences for their relation to neigh-
boring segments. The segments are considered as rotated bounding boxes and do
not necessarily have to be characters or words. One default box, representing a
segment, is defined per location and results in 31 predicted values. These are 2
for the segment confidence, 16 for the confidence of 8 within-layer links, 8 for the
confidence of 4 cross-layer links and 5 for the offsets of the bounding box15. For
the cross-layer links to work properly, there is a further constraint on the source
feature maps on which the default boxes are defined. They must have exactly the
half spatial dimension as the previous one. The detected segments and links are
then considered as graph, segments as vertices and links as edges. After filtering
segments and links by thresholding, the remaining connected components are com-
bined to oriented bounding boxes.
Liao et al. 2018 published TextBoxes++, which equips their TextBoxes for arbi-
trarily oriented text. Therefore, it does not only offset regression for axis-aligned
bounding boxes, but also for rotated bounding boxes and quadrilaterals. To bet-
ter fit to arbitrary oriented text instances, the aspect ratios of the default boxes
are changed to (1,2,3,5,1/2,1/3,1/5), the size of the irregular convolution kernels is
set to 3x5, and to speed up NMS, the NMS is first performed on the axis-aligned
bounding boxes and then, only if it is necessary, on the computationally more ex-
pensive oriented bounding boxes/quadrilaterals. The authors mentioned that the
simultaneous regression of axis-aligned bounding boxes, rotated bounding boxes and

15All confidences are modeled via Softmax Layers (Section 2.3.5) with two classes (positive and
negative) and thus lead to two values each.
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quadrilaterals has a positive effect on the training process and makes it more stable.
They also proposed a simple but efficient way to eliminate false-positive detections.
Therefore, they applied the TextBoxes++ model in with CRNN (Shi et al. 2015) for
recognition and used a combined value of detection and recognition score to suppress
candidates that are unlikely to contain meaningful words.
Zhou et al. 2017 proposed EAST, which outperformed the previous state-of-the-
art on the ICDAR 2015 challenge by an f-measure increase of 16 percent. It is
inspired by DenseBox (Huang et al. 2015), which predicts scores and bounding boxes
for each pixel in the input image, but gets most of its performance gain from the
PVANet16 backbone architecture (Hong et al. 2016). For the pixel-wise predictions,
an upsampling branch like in U-Net (Ronneberger et al. 2015) is used to gradually
merge feature maps from multiple convolution blocks and exploit more contextual
information. The predictions contain the confidence scores, rotated bounding boxes
and quadrilaterals. Instead of hard negative mining, the class balanced CE loss from
HED (Xie and Tu 2015) is used and loss functions for regression are chosen in such
a way that they better cope with the high aspect ratio of the bounding boxes. For
the rotated bounding boxes, the IoU loss as in UnitBox (Yu et al. 2016) is utilized
in combination with the rotation loss in (4.1). For the quadrilaterals, the Smooth
L1 loss is used and normalized by the shortest edge length of the quadrilateral.

L = 1− cos(θ̂ − θ) (4.1)

4.2.3 Segmentation-based

Text instances in scene text images usually lie very close to each other or even over-
lap, making it difficult, if not impossible, to separate them by methods that regress
rectangular bounding boxes. In addition, curved and perspective text is another ma-
jor issue for box-based detectors and a subsequent recognition stage. In such cases,
segmentation methods represent a more promising approach. They typically pro-
duce more accurate pixel-wise predictions, but also require more computation and
an additional post-processing step to get from a semantic or instance segmentation
map to proposals in form of bounding boxes.
Yao et al. 2016 tackled the text detection problem in form of semantic segmentation
and were inspired by HED (Xie and Tu 2015), an efficient CNN-based edge detector.
This is not surprising since text in general correlates strongly with edges. HED does
upsampling as in FCN (Long et al. 2014) and fuses features from different feature
maps, which involves more contextual information and provides deep supervision
(Lee et al. 2014) during training. For text detection, the model produces three

16PVANet is an architecture with residual connections and inception blocks designed for object
detection.
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dense prediction maps, one for the text regions, one for the individual characters
and one for the linking orientation of the characters. Candidates for text regions
and characters are then obtained via adaptive thresholding on the prediction maps.
Character candidates within a region are then considered as vertices of a graph,
where the edges represent the geometric (spatial and orientation) similarity of the
characters. Finally, graph partitioning is used to split groups of character candidates
into separate text lines. The advantage of this segmentation approach is that it can
also handle curved and arbitrary oriented text.
Deng et al. 2018 proposed PixelLink, an instance segmentation approach that is
actually inspired by SegLink. The idea is straightforward, instead of detecting seg-
ments and predicting their linkage to their neighbors, consider a map with same size
as the input image and do classification and linking estimation for each individual
pixel. The network output has then 18 values per pixel, 2 for the text/non-text
confidence and 16 for the linking confidence with respect to the 8 neighboring pix-
els. Only links within the same instance are positive, otherwise they are negative.
Pixels predicted positive are connected via positive links are joint into connected
components and to obtain a minimal bounding boxes, the authors used the OpenCV
(The OpenCV Reference Manual 2014) method minAreaRect. The architecture of
PixelLink is quiet simple, a fully convolutional VGG-16 model as backbone, an up-
sampling branch with feature fusion from each of the conv stages in the backbone
and a 1x1 convolution with 18 kernels for the predictions. PixelLink with VGG-
16 backbone outperforms EAST with PVANet and multi-scale prediction on the
ICDAR 2015 benchmark.

4.3 Text Recognition

The objective of text recognition is to take a cropped word image and generate the
transcription of the word present in the image.
Since humans read text by processing it as a sequence, it is quite natural to consider
text recognition as a sequence-to-sequence learning problem. Practically all recent
and successful approaches do so and process text images either with RNNs or CNNs.
For this reason, Section 4.3.1 will introduce some of these concepts.
Another issue inherited from box-based text detectors is that the cropped word
images often contain curved or perspectively distorted text, making it difficult to
handle them as proper sequence. To address this, more advanced methods have
been proposed to bring the content of the image in a more sequence-like form.
Section 4.3.2 will address this in more detail.
Section 4.3.3 will provide some common recognition metrics that can be used to
measure and compare the performance of text detection systems.
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4.3.1 Sequence-based Recognition Methods

Jaderberg et al. 2014 not only published their synthetic word dataset, but they also
made experiments with CNNs for word recognition. The architecture (3x(Conv->
MaxPool)->Conv->FC->FC->Softmax) was rather standard and had a fixed input of
32x100 pixels. The images were resized to the input size without preserving their
aspect ratio. Based on this architecture, they came up with three different variants
on how the network output is defined and the actual classification is performed.
The first variant is pure word classification with one class for each word in a dic-
tionary. In this case the first FC has 4096 and the second FC layer has as many
units as words in the dictionary (90k classes). Training is done with the Categor-
ical CE Loss, starting with 5k classes and gradually increasing them after partial
convergence. The large number of classes is quite feasible, but only words that are
contained in the dictionary can be recognized.
The second variant was the naive sequence encoding approach with independent
classifiers and without further language assumptions. One classifier for each char-
acter in a fixed size sequence. Instead of separately predicting the sequence length,
as it was done by Goodfellow et al. 2013a, they introduced a null character to
identify the end of the sequence. The last fully FC layer has then a dimension of
23 for the maximal sequence length times 27 for the number of characters in the
alphabet. Consequently, the training is done with 23 softmax distributions and
Categorical CE Loss.
The third and last variant encodes the output as a bag-of-N-grams17. When |GN |
is the number of all N-grams in the training set, the network output is encoded to
a |GN |-dimensional binary vector for the gram occurrences. This vector is typically
very sparse and for N = 4 there are only 7 collisions when encoding the words from
the 90k-word dictionary. The last FC layer has GN units with sigmoid activation,
to represent the probability for the presence of the individual N-grams. Training is
done with GN Binary CE Loss functions and since some N-grams occur much more
frequently then others, the gradients are scaled by the inverse of the frequency in
the training set.
All three models achieved state-of-the-art results on ICDAR 2003, ICDAR 2013,
etc., which is most likely due to the large amount of synthetic training data.
Shi et al. 2015 proposed Convolutional Recurrent Neural Network (CRNN), a sim-
ple but efficient architecture (Figure 4.1) for text recognition that uses a stack of
convolutional layers to get from an input image, with theoretically arbitrary width,
to a sequence of feature vectors which subsequently serves as the input to the first of
two BLSTM layers (Section 2.4.4). Each feature vector represents a local region in

17N-grams are all possible sub-strings up to length N, e.g. for N = 3 G3(’word’) =
{’w’, ’o’, ’r’, ’d’, ’wo’, ’or’, ’rd’, ’wor’, ’ord’}.
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the input image. The BLSTMs function as a mechanism that holds contextual infor-
mation and thus help the model to easier distinguish between ambiguous characters.

Input

Conv 3x3, 64

MaxPool 2x2/2

Conv 3x3, 128

MaxPool 2x2/2

Conv 3x3, 256

Conv 3x3, 256

MaxPool 1x2/2

Conv 3x3, 512

BatchNorm

Conv 3x3, 512

BatchNorm

MaxPool 1x2/2

Conv 2x2, 512

Map-to-Sequence

Bidirectional-LSTM

Bidirectional-LSTM

Output

Fig. 4.1: CRNN Archi-
tecture (for clarity, the
ReLU after each Conv
layer are not displayed)

The whole model comes with relatively few parameters
and is trained via CTC (Section 2.5.7) on the synthetic
word dataset (Jaderberg et al. 2014). Tanks to the CTC,
the transcription of the output can be done in a lexicon-
based or lexicon-free manner. The authors also applied
the method successfully to the problem of musical score
recognition. CRNN and its architecture are rather basic
and often used for recognition tasks (Jain et al. 2017;
Liao et al. 2018). Also, the CTC is often the default
approach to the sequence-to-sequence learning problem.
Figure 4.2 shows typical model in- and output of a text
recognition model trained with the CTC.
Lee and Osindero 2016 proposed R2AM, another method
that extracts features via convolutional layers and learns
a character level language model via recurrent layers. For
the CNN part they used Recursive Convolution, where
the weights are shared across multiple layers (Liang and
Hu 2015), resulting in a much deeper model with fewer
parameters. In the RNN part of the architecture they
leveraged a sequential attention mechanism, which orig-
inated from applications in machine translation (Bah-
danau et al. 2014; Chorowski et al. 2015). Attention in
general enables the model to focus on relevant features
and provides a potential way of interpretability (Xu et al.
2015b). The authors of R2AM experimentally evaluated
different variants of how the image features are fed into
the RNN, including versions with stacked RNN and with
the attention mechanism. In all experiments, the RNN learned a character level lan-
guage model that is not constrained by a dictionary or predefined N-grams. Both,
Recursive CNN and attention mechanism outperformed the current state-of-the-art
on their own.
Gao et al. 2017 proposed an attention convolutional network for scene text recogni-
tion, where they replaced the recurrent layers with a stack of convolution layers and
employed residual attention modules as they were proposed by Wang et al. 2017a.
These attention modules come with two branches, one which generates a soft atten-
tion map that captures high-level semantic information in a bottom-up top-down
fashion, and a second residual branch on which the salient map is subsequently ap-
plied. The attention mechanism helps the model to focus on contextually useful
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information and suppress background noise. Additionally, dense blocks (Huang et
al. 2016a) were adopted to improve the information flow in the network. Training
is done classically via CTC. The authors have shown slightly higher recognition
accuracies, compare to Convolutional Recurrent Neural Network (CRNN), but with
fewer model parameters, less training time and much higher recognition speed (9
times faster).

0 10 20 30 40
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0.8
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blank T i r e d n s

----T-ii--r---e----d----n----e----s---s----

Fig. 4.2: CTC based text recognition (Bušta et al. 2017); from top to bottom, CNN
input, character probabilities, output string (before removing blanks and duplicates)

4.3.2 Rectification Methods

As mentioned above, irregular word images which contain curved, perspective, dis-
torted, multi-oriented or loosely bounded text are difficult to recognize. In the
following, two interesting approaches to solve this problem will be considered.
Shi et al. 2016 build on Spatial Transformer Networks (STNs) (Jaderberg et al. 2015)
18 and learn a Thin-Plate Spline (TPS) transformation (Zagorchev and Goshtasby
2006) to rectify the input image. Therefore, their architecture mainly consists of
two subnetworks, a Localization Network and a Sequence Recognition Network.
The Localization Network is a CNN that directly regresses the xy-coordinates of K
fiducial points on the input image. These points are used in the grid generator to
calculate the parameters of the TPS transformation and to generate the sampling
point coordinates on the input image (Figure 4.3). The Recognition Network has
a sequence-to-sequence learning structure with an encoder (CNN + BLSTM) and
a decoder (GRU + attention mechanism). The attention mechanism is the same
as in R2AM and learns for each time-step a weighted sum of the BLSTM output,
considered as the hidden state. The training is similar to applying a CTC and does

18STNs learn the parameters of a spatial transformation and sample their output from their
input feature map.
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Fig. 4.3: Structure of rectification STN; fiducial points C, sampling grid P (Shi
et al. 2016).

not require extra annotations for the fiducial points. Recognition is lexicon-based
with prefix tree and beam search.
Yang et al. 2017 took the sequential attention mechanism as used in R2AM and
generalized it to perform 2D feature selection. Their model consists of three sub-
networks, a feature extractor, a character detector and a RNN for the recognition
part. The FCN-based (Long et al. 2014) character detector does pixel-wise text/non-
text classification and functions as auxiliary task for learning a high-level visual rep-
resentation in the feature extractor. The RNN with attention mechanism receives
this high-level representation as inputs and predicts the character sequence. The
model is trained on a synthetically generated dataset with character-level annota-
tions and a multi-task loss function consisting of three terms, a pixel-wise Binary CE
for the detection, Categorical CEs for the recognition and an attention alignment
term to guide the attention mechanism. The ground truth for the detection task is
a binary map and can be computed from the character-level bounding boxes. Sim-
ilarly with the ground truth for the attention alignment which is considered as a
truncated Gaussian distribution that can be calculated from a single character-level
bounding box at each time-step. For the attention alignment loss, the authors pro-
pose various metrics for minimizing the difference between the ground truth and the
predicted distribution. These can be an element-wise L1 or L2 loss, the KL diver-
gence or a approximation of the Wasserstein distance19. The approach significantly
outperformed (Shi et al. 2016) on SVT-Perspective and CUTE80.

4.3.3 Metrics for Text Recognition

The most common measure known from OCR is the Edit Distance. Formally, given
two character strings a and b, the Edit Distance ed(a, b) is then the minimum weight-

19The Wasserstein (WD) or Earth Mover’s distance indicates the minimum mass that needs to
be transported in order to transform one distribution into another. As a loss function, the WD
results in a more stable training behavior and got recent attention due to its use in adversarial
training (Arjovsky et al. 2017).
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series of edit operations to transform string a into string b, but usually, a special case,
the Levenshtein Distance is meant. In case of the Levenshtein Distance, the edit
operations are Insertions, Deletions and Substitutions and all operations have unit
cost/weight20. In other words, the Levenshtein Distance is the number of Insertions,
Deletions and Substitutions to transform string a into string b. Due to the same
cost, the Levenshtein Distance distance is symmetric (ed(a, b) = ed(b, a)). The edit
distance is usually calculated per word, and then the mean edit distance over all
test samples is compared.
Other common measures are Word and Character Recognition Rate. The word
recognition rate is simply the ratio of correctly recognized words to the total number
of words.

WRR =
|CorrectlyRecognizedWords|

|Words|
(4.2)

The character recognition rate is similar, but on character level and can be expressed
by utilizing the edit distance.

CRR =

∑|Words|
1 |GT| − ed(GT,RT)∑|Words|

1 |GT|
(4.3)

Where word-level recognition is considered and ’Words’ is the set of test samples.
For each word, ’GT’ refers to Ground Truth and ’RT’ to Recognized Text string.

4.4 End-to-End trainable Text Recognition

Instead of ad-hoc combining the state-of-the-art methods for text detection and
recognition, a few recent approaches appeared which train a holistic model for scene
text spotting end-to-end. The benefits of an end-to-end trainable system are obvious,
no intermediate stages or hyperparameter tuning is required, the computation and
the learned features can be shared between the detection and recognition, and more
contextual information can be included to improve the overall performance.
All the approaches that will be investigated below are more or less difficult to train
and either build on the idea of STNs (Jaderberg et al. 2015) or RPN and RoI Pooling
(Ren et al. 2015).
Li et al. 2017 proposed an end-to-end trainable architecture for spotting horizon-
tal text. Rectangular anchor boxes are defined on the last convolutional layer of
a truncated VGG-16 model and a RPN with rectangular convolution kernels (Liao
et al. 2016) is used to generate text region proposals at word-level. A Region Fea-
ture Encoder re-samples the RoIs from the convolutional feature map into tensors
of variable width and encodes them via a LSTM layer into a fixed length repre-

20Substituting a character with itself has a cost of 0.
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sentation21. Subsequently, a Text Detection Network with FC layers estimates the
textness score and bounding box refinement for each proposal. After filtering the
proposals via threshold and NMS, the refined RoIs are re-sampled again and en-
coded by the Region Feature Encoder. The resulting fixed length representations
are then decoded in a Text Recognition Network into words. This is done via LSTM
and a soft attention mechanism as in Lee and Osindero 2016; Shi et al. 2016. The
convolutional feature extractor only needs to be evaluated once for an image. For
the training process, a curriculum learning strategy (Bengio et al. 2009) is applied.
Starting with a trained VGG-16 model, only the detection network is trained on
images with monochrome background and words from the Syntehtic Word engine.
In the next step, the recognition network is added and both are trained on the syn-
thetic data and two more steps follow, one with the SynthText dataset an on with
real-world data from ICDAR 2015, SVT and AddF2k.
The authors of Deep TextSpotter (Bušta et al. 2017) have chosen YOLOv2 (Sec-
tion 3.4.8) as the foundation for their work. The YOLOv2 model is made fully
convolutional by removing the FC layers, which allows the model to process high
resolution scene images and leads to higher accuracy. A RPN is used to generate
proposals in form of rotated rectangles. The scales and aspect ratios of the anchor
boxes are determined by k-means clustering on the aggregated training set (Red-
mon and Farhadi 2016) and the proposals are filtered by confidence, but no NMS
is applied. A STN is then learned to transforms the regions with different size and
orientation into a tensor with fixed height and variable width while preserving the
aspect ratio. The subsequent recognition network is fully convolutional (so it can
handle the variable width) and trained with CTC. At test time, empty detections
are rejected and finally NMS is applied based on the recognition score. The train-
ing process benefits from pre-training each of the two subnetworks on their own.
The detector network is initialized with weights from ImageNet and pre-trained on
SynthText. The recognition network is randomly initialized and pre-trained on the
Synthetic Word dataset. Finally, the whole model is trained on a combination of
SynthText, Synthetic Word and ICDAR 2013.
Bartz et al. 2017 came up with an end-to-end text spotting system, called SEE
(short for Semi-supervised End-to-End), that does not require bounding box anno-
tations and can be trained solely by classifying the word sequences. The detector
network in SEE consists of a ResNet architecture with two attached LSTM layers
for sequentially detecting one word candidate per time-step. These word candidates
are estimated as the parameters of affine transformation matrices, which are then
used to bilinearly sample the text area from the image feature map into the input of
the recognition network. The recognition network is also based on a ResNet archi-

21The input of the LSTM is considered as sequence of variable length (width in this case) and
fed into the LSTM. At the last time-step, the hidden state is returned as a holistic fixed-length
representation of the sequence.
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tecture that comes with an BLSTM on top of it. The hidden state of the BLSTM at
each time-step is then classified22 via FC->Softmax-> and the bounding boxes are
derived from the affine transformation matrices. ResNet was chosen by the authors
because the skip connections can carry a strong error signal to the detector net-
work, which is the only error signal that the detector receives. Training requires a
curriculum learning strategy as well as several regularizations on the transformation
matrices. Therefore, a dropout (Section 2.3.6) mechanism is used to prevent the net-
work from learning matrices which perform excessive rotations and regularization
terms concerning the aspect ratio and orientation of the sampling grid are added
to the loss. The authors have shown, with comparable results on the French Street
Name Signs dataset, that it’s possible to train an end-to-end text spotting system
without bounding box annotation. However, the system is not state-of-the-art and
certainly has the potential to be improved.
Liu et al. 2018 proposed Fast Oriented Text Spotting (FOTS). Its feature extrac-
tor is also based on ResNet. To include more contextual information, high- and
low-level features from multiple feature maps are fused (Lin et al. 2016) in a upsam-
pling branch (from 1/32 to 1/4 of the input size). The upsampled feature map
is then used in a RPN for the dense pixel-wise prediction of rotated bounding
boxes and their textness score. The proposals are then filtered by thresholding
and NMS. RoIRotate, inspired by RoIAlign in Mask R-CNN (Section 3.4.5), re-
samples the proposed RoIs into axis-aligned feature maps with variable width. The
re-sampling is done via affine transformation and bilinear interpolation. The nec-
essary parameters are either calculated from estimated or ground truth bounding
boxes (that is different from STNs). The subsequent recognition branch is rather
basic, 3x(Conv->Conv->MaxPool)->BLSTM->FC->CTC. The loss function is a multi-
task loss, where the detection part utilizes CE loss for classification and IoU loss
with rotation angle loss for bounding box regression (same in EAST (Zhou et al.
2017)). At training time, the model is initialized with pre-trained weights from
ImageNet and trained on SynthText before it gets fine-tuned on real-world data.
The transformation parameters used during training are calculated from the ground
truth bounding boxes. Data augmentation and OHEM are applied. The approach is
elegant, relative easy to train, fast (22.6 fps on NVIDIA Titan Xp) and outperformed
the previous state-of-the-art on ICDAR 2015 by more then 5 percent points.

22The classes are the characters of the alphabet plus an additional ’blank’ (see Section 2.5.7 for
more details).
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Implementation

The goal of this work is to implement and eventually improve a state-of-the-art
end-to-end scene text recognition system.
Therefore, a preexisting open source implementation of SSD1 was updated and heav-
ily refactored. Starting with this code basis, TextBoxes for detecting horizontal text
and SegLink for oriented text were implemented. Afterwards, a recognition stage
similar to CRNN was developed. For applications on a mobile robot platform, a
ROS2 node was implemented, which receives a camera image and performs the de-
tection (and recognition) task in real-time. Support for the following datasets have
been added: PASCAL VOC, MS COCO, ICDAR 2013, ICDAR 2015, SynthText,
MSRA TD500, SVT and COCO Text. The whole code was written in Python, using
Keras, Tensorflow and OpenCV. It is publicly available under MIT license3.

5.1 Design Decisions

The choice to start with SegLink had multiple reasons. First, it was the best ap-
proach listed on the ICDAR 2015 challenge, for which a publication was available
at this time. Second, SSD as object detector is quite versatile, has good speed-
performance trade-off and manageable complexity. CRNN was chosen to build an
end-to-end recognition pipeline. It has shown good results and is rather elegant due
to its architectural simplicity. Another major reason for the decisions was that the
author wanted to get familiar with concepts like CNN, LSTM and CTC. Python as
programming language was chosen because of its large ecosystem related to scientific
computing and machine learning in particular. Keras as DL framework was chosen
since, on the one hand, it provides a high-level API to keep unnecessary program-
ming overhead at a minimum, and on the other hand, it allows writing necessary
code like custom layers and loss function directly with TensorFlow.

1https://github.com/rykov8/ssd_keras by Andrey Rykov
2http://www.ros.org
3https://github.com/mvoelk/ssd_detectors
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5. Implementation

5.2 Detection

This section tries to provide more detailed insights into the detection stage.
After updating the existing SSD code to Keras 2.0 and making the model compatible
with the original architecture, a conversion script was written to import pre-trained
weights from the original SSD Caffe implementation4. This was done since SSD
can’t be trained from scratch and starting with a pre-trained SSD model should
converge faster than initializing with VGG-16 weights trained on ImageNet. Also,
the concept of PriorBox Layer was dropped and replaced by a class called PriorMap.
PriorBox Layers originate from Caffe implementation and have been recreated in the
Keras implementation. They are responsible for the computation of the prior boxes
defined on each location of a feature map. Their replacement with the PriorMap
class was done because it makes less sense to calculate the prior boxes in NumPy,
push them to the GPU where they get returned unchanged and processed in NumPy
again. This is neither necessary since no backpropagation goes through them, nor
intuitive and often leads to confusion. As long as the spatial dimension of the feature
maps remains constant, it is also sufficient to calculate the prior boxes only once at
beginning. The development of an existing procedure for data augmentation was
continued in form of an InputGenerator class and another InputGenerator class was
written for cropping word instances from training images.
The implementation of TextBoxes was straightforward, simply changing the kernel
size and adjusting the default boxes. A computationally more efficient algorithm for
NMS was adopted from Girshick et al. 2012.
The SegLink (Section 4.2.2) implementation was a bit more time-consuming. A
SSD model with input sizes 512x512 analog to pre-trained models in the Caffe
version was added. It has prior boxes defined on feature maps that scale their size
in powers of two (64x64, 32x32, 16x16, 8x8, 4x4, 2x2, 1x1). At each location of
these feature maps a default box is defined and local predictions are performed in a
convolutional manner (analog to Figure 3.5). For each default box or segment s =

(xs, ys, ws, hs, θs), the 31 values, 2 for segment confidence, 5 for segment offsets, 16 for
within-layer link confidence and 8 for cross layer to the next larger feature map are
estimated. The linking is illustrated in Figure B.1. Offset (∆xs,∆ys,∆ws,∆hs,∆θs)

are related to the segment geometry as described in (5.1), where the factor al = γ wI

wl

is used to scale the segments with regard to the size of the receptive field. wI is the
width of the input image, wl the width of the feature map and γ is a empirically

4https://github.com/weiliu89/caffe/tree/ssd by Wei Liu
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determined constant set to 1.5.

xs = al∆xs + xa

ys = al∆ys + ya

ws = al exp(∆ws)

hs = al exp(∆hs)

θs = ∆θs

(5.1)

The center of the prior (or anchor) box in the input image (xa, ya) is computed from
the location on the feature map (x, y) via (5.2) and the exp function is used to make
differences (e.g. 1 pixel) for smaller bounding boxes more significant in the loss than
for large ones.

xa =
wI
wl

(
x+

1

2

)
ya =

wI
wl

(
y +

1

2

) (5.2)

For predicting bounding boxes, the detected segments and links are filtered by confi-
dence thresholds and considered as a graph (segments as vertices and links as edges).
A depth first search is used to identify the groups of connected segments. The seg-
ments of each group are combined into rotated bounding boxes b = (xb, yb, wb, hb, θb),
as illustrated in Figure B.4. Starting with a group B = {si}|B|i=1 of |B| segments si,
he bounding box orientation is the average of the segments orientations.

θb =
1

|B|

|B|∑
i=1

θis (5.3)

Next, a straight line y = tan(θb)x+ b is fitted to minimize its distance to the centers
of the segments in B. All the segment centers are then projected onto the line and
the extreme points (the outermost projected points on the line) (xp, yp) and (xq, yq)

are determined. The remaining parameters of the bounding box are calculated as
follows.

xb =
1

2
(xp + xq)

xy =
1

2
(yp + yq)

wb =
√

(xp − xq)2 + (yp − yq)2 +
1

2
(wp + wq)

hb =
1

|B|

|B|∑
i=1

his

(5.4)

For calculating local ground truth for the links and segments, a prior box is assigned
to a ground truth bounding box if its center is inside the ground truth box and
fulfills (5.5). If the center of a default box is inside multiple ground truth boxes, it
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5. Implementation

is assigned to that with the smallest distance. All other segments are negative. ha
is the height of the ground truth bounding box.

max

(
al
hg
,
hg
al

)
≤ 1.5 (5.5)

Links are positive if both adjacent segments are positive and assigned to the same
ground truth box, otherwise they are negative. This assignment procedure is also
illustrated in Figure B.2. The geometry of the local ground truth is calculated as
depicted in Figure 5.1. For training, a Multi-Task Loss (2.48) with three terms
(CE Loss (2.40) for segment and link confidence, L1 Loss (2.34) for segment offsets)
and a procedure for OHNM of both segments and links was implemented directly
with TensorFlow. For more details on SegLink see Shi et al. 2017.

word 
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Fig. 5.1: Ground truth segment calcula-
tion; given default box and ground truth
bounding box (Shi et al. 2017)

Furthermore, variants of the SSD and
SegLink loss were developed that re-
place the CE Loss and OHNM strat-
egy by the Focal Locss (2.41). They
are more elegant and focus training au-
tomatically on hard samples by dynami-
cally weighting them based on their con-
fidence.
To be able to train SegLink mod-
els from scratch and not rely on pre-
trained VGG-16 models, a DenseNet-
based backbone architecture inspired by
Shen et al. 2017 was added. The result-
ing models have fewer trainable param-
eters and should contain more text-specific features. The architecture (for 512x512
input) is fully convolutional, contains 4 Dense Blocks with growth rate 48 and has
a total depth of 83 layers. Figure 5.2 shows these architecture in more detail.

5.3 Recognition

The recognition stage is less complex than the detector, but it still deserves some
words.
For reading the text contained in a cropped word image, a network architecture
similar to that of CRNN Shi et al. 2015, shown in Figure 4.1, was chosen. The
CNN part learns text-specific features and outputs a sequence of feature vectors.
The subsequent RNN part processes this sequence and learns an implicit language
model. Decoding to the RNN output and training of the model is done via CTC.
Deviating from CRNN, the BLSTM layers were replaced by Bidirectional GRU
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Fig. 5.2: Architecture of the SegLink-DN model; backbone with Dense Blocks for
feature extraction on the left and the prediction paths on the right. The layer
coloring and the structure of the prediction paths are analog to the SSD architecture
in Figure 3.5. The notation related to convolution and pooling layer is ’kernel size,
stride, filters’ and ’pooling size, stride’ respectively. Padding is always ’same’. (The
figure is best viewed in PDF version.)

layers, which come with fewer trainable parameters without sacrificing performance.
The input of the recognition network is a gray-scale word image with fixed height of
32 pixels and theoretically variable width. However, the width has been set to 256
pixels and the images are zero-padded/truncated to preserve the aspect ratio. Keras
requires that all samples in a batch have the same size and a fixed width was just the
simplest solution to this limitation. The alphabet was extended and now contains
lower-case, upper-case, digits and ’ +-*.,:!?%&$~/()[]<>"\’@#_’ (practically all
characters contained in the SynthText dataset, ’_’ indicates the blank).
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Chapter 6

Experiments

For the following experiments the SynthText dataset was split into two subsets, one
for training (90%, 772874 samples) and one for test/validation (10%, 85875 samples).
SynthText was chosen due to its large size. Cross-validation1 was omitted due time
constraints and the large size of the dataset. All the experiments were carried out
on a NVIDIA GeForce GTX 1080 Ti with 11 GB RAM.

6.1 SegLink

To get a base line, a SegLink model was trained. The backbone of the network was
initialized with weights from a pre-trained SSD512 model2 converted from Caffe and
the prediction paths3 randomly using Xavier Initialization method (Section 2.2.1).
Training was done with the standard SegLink Loss and OHNM. The terms in the
loss (for segment, link confidence and offset regression) were all equally weighted
and the negative to positive ratio was chosen as 3.0. Adam (Section 2.2.3) was used
as optimizer with an initial learning rate of 1e-3, β1 of 0.9 and β2 of 0.999. The batch
size was 24 and no data augmentation was applied. The training process initially
converged and diverged after the second epoch. This behavior was caused by a
numerical issue in Adam and disappeared after increasing the epsilon parameter in
Adam from 1e-8 to 1e-3. Training was repeated.
Threshold values for filtering segments and links were obtained via grid search.
Therefore, the f-measure on 64 samples from the validation set was calculated for
segment-link threshold combinations in steps of 0.1 (Figure 6.1a). 64 samples are
probably a too small set for estimating reliable threshold values, but the computation
of the grid search is relatively fast.
The resulting model shows an f-measure of 82.8% on 1024 samples4 from the val-

1For k-fold cross-validation, a dataset is split into k equally sized subsets. Then one of them is
held out for validation and the rest of them are used for training a model. After repeating this for
all k subsets, the performance measures are averaged over the k cases.

2The pre-trained SSD model was initialized with VGG-16 weights trained on ImageNet and
fine-tuned on Pascal VOC.

3The prediction paths of the SegLink architecture have the same structure as those in Figure 3.5.
4The size of the validation set was chosen so small due to the time required for evaluation.
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6.2. SegLink with DenseNet Backbone

idation set. This value can not be directly compared with the 75% shown by the
SegLink authors on the ICDAR 2015 test set, but it indicates that the implemen-
tation is working. The original SegLink was trained on SynthText and fine-tuned
on the ICDAR 2015 training set. Since ICDAR 2015 is more difficult compared to
SynthText and the test set in our case is from the same distribution as the training
set, which is not the case when fine-tuned and evaluated on ICDAR 2015, makes
an f-measure increase of 8 percent points quite plausible. For the rest of the work,
this model is referred to as ’SegLink’ and further details regarding the model are
summarized in Table 6.1.

Model SegLink SegLink-DN SegLink-DN-FL

Parameters ~24M ~13M ~13M

Memory usage 420 MB 1.50 GB 1.50 GB

Batch size 24 6 6

Epochs 2 2 2

Iterations ~24k ~257k ~257k

Segment threshold 0.67 0.57 0.55

Link threshold 0.55 0.22 0.35

Precision 84.6 89.6 93.1

Recall 81.2 89.6 89.1

F-measure 82.8 89.65 91.1

Prediction time 27.8 ms 44.1 ms 44.1 ms

Prediction + decoding time 32.7 ms 45.8 ms 45.8 ms

Frame rate 30.6 fps 21.8 fps 21.8 fps

Tab. 6.1: Comparison of text detection models; training and validation was done on
the SynthText dataset split by 0.9, precision, recall and f-measure were calculated
on 1024 samples from the validation set and are given in percent, segment and link
threshold were estimated by examination of plots as shown in Figure 6.1

.

6.2 SegLink with DenseNet Backbone

In the next step a SegLink model with DenseNet backbone was trained from scratch.
The complete model was randomly initialized and the training parameters were kept
the same as those for the SegLink model, except the batch size had to be reduced
drastically.

5Yes, the values are the same (precision=0.896121, recall=0.895801).
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6. Experiments

This reduction in batch size is caused by the many skip connections in the Dense
Blocks that require much more gradient data to be memorized during backpropaga-
tion. Compared to the SegLink model, the memory consumption for a batch of size
1 increased from 420 MB to 1.50 GB, which leads with 11 GB memory to a maxi-
mum batch size of 6. A virtual batch size for which the gradient of multiple physical
batches gets accumulated before the backward pass is performed would eliminate
this limitation, but this is not (yet) implemented in Keras and also not within the
scope of this work.
As expected, the training process was highly stochastic due to the small batch
size, but also has shown better results. The models obtained after each epoch were
evaluated as in the previous experiment and the model after the second epoch yielded
the highest f-measure of 89.6%. This is a increase by 6.8 percent points, whereby the
model was trained from scratch and the number of parameters has been reduced to
almost half. More details on the model, which is now referred to as ’SegLink-DN’,
can be found in Table 6.1.
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Fig. 6.1: Gird search for estimating segment and link thresholds; heat-map via
bicubic interpolation.

6.3 SegLink with DenseNet Backbone and Focal Loss

To see if the performance of the SegLink-DN model can be further increased by more
efficiently focusing on hard samples, another model using the Focal Loss instead of
CE Loss and OHNM was trained, which is in the following referred to as ’SegLink-
DN-FL’.
The focusing parameter γ of the focal loss was set to 2.0 for both segments and links.
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6.3. SegLink with DenseNet Backbone and Focal Loss

The weighting of the different loss terms have been adjusted to better scale the focal
loss (λsegments=100.0, λoffsets=1.0 and λlinks=100.0). All other training parameters
were adopted from the SegLink-DN experiment. The training loss over the first two
epochs is shown in Figure 6.2. It can be clearly seen how stochastic the training
process is due to the small batch size. Also, a sudden drop in of the loss can be
observed at ~3600 iterations, which is most likely caused by a local optimum in the
segment classification (seg_conf_loss in plots).

Fig. 6.2: Training loss SegLink-DN-FL model; bottom axis indicates iterations, top
axis epochs. The right plots are the continuation of the left with appropriate scale.
The orange line is a moving average with window size of 1000 iterations.
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Fig. 6.3: Training and validation loss of a SegLink-DN-FL model after each epoch;
the training loss is averaged during training and thus initially greater than the
validation loss.

The grid search for finding good values for segment and link thresholds was per-
formed as in the experiments above and is shown in Figure 6.1b. It looks more
natural compared to that of the SegLink in Figure 6.1a, which was initialized with
ImageNet feature and trained with OHNM.
In terms of f-measure, the focal loss improved the SegLink-DN model by 1.5 percent
points, resulting in a total increase of f-measure, compared to the SegLink model,
of 8.3 percent points. The gain in f-measure is caused by a high precision of 93.1%,
but further experiments would be required to find more optimal values for γ and λ.
The deeper architecture of the SegLink-DN model has its price. Since the forward
pass takes longer, the frame rate for real-time detection drops by almost a third
compared to the SegLink model.
Since the SynthText dataset is relatively large, taking model snapshots and doing
validation after each epoch is not the best practice. Therefore, another SegLink-
DN-FL model was trained on a quarter of the training/validation set. The training
and validation loss is plotted in Figure 6.3. It shows little overfitting, but the
validation loss peaks after the 5th epoch, which should be further investigated. The
model obtained after the 12th epoch exhibits with 92.2% an even higher f-measure
on the same validation set as the model listed in Table 6.1. Figure 6.4 shows the
precision, recall and f-measure evaluated on the local predictions for segments and
links over the epochs. The training plots show plausibly that the model first learns
the segments and then the linking. The high precision and gradually increasing
recall also indicate that it first learns to detect the easy instances and later the hard
ones. The validation plots give a first hint, that the peak in the validation loss is
caused by the linking.
It may be a better idea and should be considered for further experiments that
validation can be done regularly after a certain number of iterations. Also, early
stopping (Section 2.2.5) should be taken into consideration.
In addition, experiments in which all ReLU activations were replaced by Leaky ReLU
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Fig. 6.4: Precision, recall and f-measure during training of a SegLink-DN-FL model;
evaluated on the top 100 local predictions for segments and links.

were carried out, but they showed no significant improvement in neither convergence
speed nor performance.
To get a more qualitative impression of detection stage, example detections from the
SynthText validation set (Figure C.1) as well as from real-world images (Figure C.2
and C.3) are attached in Appendix C.
The sample images also reveal some major issues related to the SegLink approach
and the training data.
Textures that have a similar structure to letters get falsely detected as text instances
(e.g. ’//////’ or ’HHHHHHHH’). A possible remedy could be the inclusion of more
contextual information. This can either be done by smaller default boxes, so that
the corresponding receptive field would contain more of the surrounding, or by an
up-sampling path in the architecture as in EAST (Zhou et al. 2017).
Another problem that arises from the construction of the bounding boxes is caused
by false positive links between nearby segment groups. This case can be observed
in the debugging images (Figure B.3, B.4 and B.5) on the bottom left. The final
bounding box is constructed by averaging the orientation and height of the segments
in a group and placing it on the line best fitting the segment positions. This re-
sulting in one, instead of two, bounding box of appropriate height, but between the
two word instances. A possible solution to this could be a post-processing of the
grouping, which disconnects all segments in a group that have a distance to each
other, orthogonal to the line, that is larger than a certain value (e.g. 0.7 of the
averaged height).
Since the input resolution for the experiments was only 512x512, the detection of
small text instances, as in the real-world images (Figure C.2 and C.3), is a serious
problem, that can be easily solved by increasing the input of the network without
training it again (the architecture is fully convolutional). This has also to be done
to get decent results on the ICDAR 2015 test set. It may also be desirable to have
an input resolution that is non-square and more natural (e.g. 4:3, 16:9). In this case
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training a new model would be recommended, instead of using the stretched filters.
The new model would also require a larger input size during training to maintain
the cross-layer linking, but a larger input size would result in a higher GPU memory
consumption and a further reduction of the batch size. A solution to this problem
may be the removal of the last feature map, so that the cross-layer linking could be
maintained with a lower input size.
The detection on the real-world images also completely fails on heavily curved and
vertical text instances, simply for the reason that similar instances do not occur in
the training data. The vertical instances may be addressed by data augmentation
(rotated images) and for the curved text, it should be possible to modify the Syn-
thText synthetic text engine to produce appropriate samples with curved ground
truth.
The detector also recognizes symbols that are not contained in the training set.
A possible way to suppress them would be based on the score of a subsequent
recognition stage, as it was done in TextBoxes++ (Liao et al. 2018).

6.4 CRNN with GRU

The modified CRNN architecture as described in Section 5.3 was trained on cropped
word images from the SynthText training set and the resulting model is in the
following referred to as ’CRNN-GRU’ and will be compared with its LSTM baseline
’CRNN-LSTM’.
The input images were converted to gray-scale for both models. Initialization was
done randomly via Xavier method and SGD was used as optimizer. The optimization
parameters were chosen rather intuitive: initial learning rate of 0.01, learning rate
decay of 1e-6, which is actually too low, Nesterov Momentum of 0.9 and a batch size
of 128. The training process showed initial instability. To fix this, the norm of the
gradient was clipped with a constant value of 5. Afterwards, the training converged
and was continued for 400k iterations. Best path decoding (Section 2.5.7) was used
to decode the output sequence.
Evaluation was done on the first 100k cropped word images from the validation
set. The calculated values for mean edit distance and recognition rates are listed in
Table 6.2.
Qualitative recognition results are attached in Appendix C Figure C.4.
For the subjectively low word recognition rate, two primary causes could be identi-
fied. The first is that some samples in the SynthText dataset are quite hard to read
even for humans, especially when converted into gray-scale. The second is that the
SynthText dataset contains some samples in uppercase letters that are labeled with
lowercase. This affects the test results negatively in the training case by learning
this pattern and in the test case by not matching it.
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Model CRNN-LSTM CRNN-GRU

Parameters 8745k 7957k

Memory usage 41.17 MB 38.17 MB

Batch Size 128 128

Iterations 300k 300k

Alphabet Length 86 86

Mean Edit Distance 0.346 0.350

Mean Normalized Edit Distance 0.084 0.085

Character Recognition Rate 0.913 0.912

Word Recognition Rate 0.853 0.851

Prediction time 38.2 ms 30.4 ms

Prediction + decoding time 38.5 ms 30.6 ms

Tab. 6.2: Text recognition models; training and validation was done on cropped
word images from the SynthText dataset split by 0.9, edit distance and recognition
rates were calculated on the first 100k samples from the validation set, prediction
time was measured on a batch of 16 text instances.

6.5 End-To-End Recognition

An end-to-end scene text recognition pipeline was built by concatenating the SegLink-
DN-FL model and the CRNN-GRU model.
Therefore, the bounding boxes predicted by the SegLink-DN-FL model are used for
cropping their content from the input image, which is then converted to gray-scale
and fed as cropped word images into the CRNN-GRU model.
Qualitative end-to-end recognition examples on the SynthText validation subset are
shown in Figure C.5.
The most frequent cause for errors in this setup is the failure of the detector. If
the detection stage predicts bounding boxes which contain none or partial text
instances, then the recognition stage has no chance to predict anything useful. One
of the end-to-end trainable text spotting systems mentioned in Section 4.4 should
be a promising approach to counteract this issue.
The proposed end-to-end recognition pipeline was also tested on the real-world im-
ages, as shown in Figure C.6, where it revealed all the problems mentioned earlier
and some further limitations. The recognition stage is unable to recognize German
umlauts because they are not included in the training data and the alphabet. In
addition, long words and failed word separation lead to large bounding boxes that
are too wide for the 256 pixel wide input of the CRNN-GRU model.
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Chapter 7

Conclusion and Outlook

In this work, a basic introduction to Feed-Forward Neural Networks and Recurrent
Neural Networks was given, followed by an overview on state-of-the-art concepts on
Convolutional Neural Networks-based object detection. After that, various recent
concepts and ideas related to text detection and recognition were discussed.
The main contribution of this work is the implementation of end-to-end scene text
recognition pipeline as a composition of a detection and a recognition stage.
For the detection of arbitrary oriented text instances, a prior approach based on
generic object detection was implemented and further improved. Therefore, a net-
work architecture based on DenseNet and the recently published concept of Fo-
cal Loss were adopted. In the subsequent experiments, a model was trained from
scratch, which, unlike the prior approach, does not depend on a pre-trained VGG-16
model and has merely half as many model parameters. In addition, the new model
increased the f-measure by 8.3 percentage points.
A prior approach was also adopted for the recognition state, which considers the text
recognition task as a sequence-to-sequence learning problem. The architecture of
the implemented recognition network consists of convolutional and recurrent layers,
where the recurrent LSTM layers were replaced by GRU. This minor change results
in a model that has 9% fewer parameters compared to the original LSTM variant
and these without sacrificing performance.
The system has also shown good real-time performance, ~21.8 fps on the detection
task and ~13.1 fps on the end-to-end recognition. One has to mention, that the
prior detection stage runs at 30.6 fps and that this reduction in frame rate is caused
by the much deeper network architecture with 83 instead of 25 layers.
Due to the rapid progress in the field and new superior approaches that appeared
during the time of this work, the proposed approach is no longer state-of-the-art.
Anyway, there are a lot of possibilities for further research related to the presented
approach and newer ideas.
The results of the detection stage could be improved by involving more contextual
information. This can be done by introducing an upsampling path in the architec-
ture (Deng et al. 2018; Zhou et al. 2017). Also, for real-time detection, temporal
contextual information could be considered. The architecture could be improved
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by using Recursive Convolution (Liang and Hu 2015) for better feature recycling or
Deformable Convolution (Dai et al. 2017) for learning rotation invariant features.
Further experiments with different growth rates and different backbone architectures
(ResNet etc.) would be interesting to see. A careful tuning of the hyperparameters
would probably lead to better results, but even simpler approaches (Liao et al. 2018)
combined with learned non-maximum suppression (Hosang et al. 2017) may have
the potential to outperform the presented approach.
The recognition stage could be speeded up by replacing the RNN based sequence-
to-sequence learning mechanism with one based on CNN (Gao et al. 2017). Exper-
iments with beam search and a language model for Connectionist Temporal Classi-
fication would be interesting.
Another issue that can be tackled are the irregular text instances, which contain
curved or perspectively distorted text. They could either be addressed by an atten-
tion mechanism (Yang et al. 2017) or by means of STNs (Liu et al. 2016b; Shi et al.
2016).
Various attention mechanisms (Bahdanau et al. 2014; Wang et al. 2017a; Xu et
al. 2015b) could also improve the whole pipeline, either in the detection or in the
recognition stage. An end-to-end trainable solution (Section 4.4), either based on
Spatial Transformer Networks or RoI Pooling layers would also be favorable.
Weakly supervised1 approaches (Hu et al. 2017; Tian et al. 2017), where the later
mentioned also consider non-sequential math expressions and script identification
in a multi-language setup (Patel et al. 2018), would also be interesting topics that
deserve further attention.
From a broader perspective, the supervised learning approach has its limitations due
to the massive amount of labeled data required. Recent findings related to semi-
supervised learning and generative models such as GANs (Arjovsky et al. 2017;
Fisher et al. 2018; Goodfellow et al. 2014) may be a remedy for this problem. GANs
are not only a good idea for improving the quality of scene images (Kupyn et al.
2017), but may also be used in a semi-supervised learning scenario (Adiwardana
et al. 2017; Souly et al. 2017). Also, reconstruction as a general proxy task for
learning better features (Balestriero et al. 2018, 2017), or text recognition as one of
multiple tasks (Kirkpatrick et al. 2017) in a more general vision system may be an
interesting direction for further research.
One final remark on the implementation of the networks. It was all done in Keras
and TensorFlow, but a framework like PyTorch, which allows imperative program-
ming, would have been a better decision, especially due to the better debugging
possibilities.
In conclusion, one can say that scene text recognition is a nice application case if one

1Weakly supervised learning is the case in which the samples are only partially labeled (e.g. in
object detection if only a few objects have bounding boxes annotations).
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wants to get a comprehensive background in the field of artificial neural networks.
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Appendix A

Dataset Examples

Fig. A.1: Example images from the ICDAR 2013 / ICDAR 2015 Focused Scene Text
dataset. All images have axis-aligned bounding box annotation.

Fig. A.2: Example images from the ICDAR 2015 Incidental Scene Text dataset.
The bounding box annotations are provided as quadrilaterals and most of the text
instances are perspectively distorted, blurred or suffer from unfavorable lighting
conditions.
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Fig. A.3: Example images from the COCO-Text dataset. The images were not
selected with text in mind and the axis-aligned bounding boxes my not be optimal
for curved or oriented text.

Fig. A.4: Example images from the SynthText dataset. Text instances and annota-
tions are in form of oriented bounding boxes and were generated by a synthetic text
engine.
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Appendix B

SegLink Illustrations

Fig. B.1: Local definitions in SegLink; locations in the input image corresponding
to the 8x8 feature map as red and locations corresponding to the 16x16 feature map
as blue dots. One default box (red box), within layer links (red dashed lines) and
cross layer links (blue dashed lines), each defined for one single location of the 8x8
feature map. They are defined for all 64 locations, but for the sake of clarity, they
are each drawn for one location only.
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Fig. B.2: Local ground truth assignment in SegLink; ground truth bounding boxes
are colored in yellow/blue with their center in green. Positive ground truth links
are shown in cyan and the assignment of reference locations to ground truth boxes
magenta.
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B. SegLink Illustrations

Fig. B.3: Local predictions in SegLink; positive segments are shown in black, their
centers in magenta and their reference location in green. Positive within-layer links
in yellow and positive cross-layer links orange.
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Fig. B.4: Bounding box construction in SegLink; segments within the same group
have the same color. The red line for each group is the one with minimum distance
to the segment centers. The yellow dots are their projections on the lines and the
red dots are the extreme points. The large red boxes are the combined bounding
boxes.
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B. SegLink Illustrations

Fig. B.5: Visual evaluation of local predictions in SegLink; true positive segments
and links are colored in green, false positives in blue and false negatives in red.
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Appendix C

Experimental Results
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C. Experimental Results

Fig. C.1: Detection examples using the SegLink-DN-FL model on SynthText val-
idation subset; ground truth bounding box in yellow (distorted original box due
to 512x512 input) and blue (rectangular correction), center in green and detected
bounding box in red.
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Fig. C.2: Real-world detection examples using the SegLink-DN-FL model
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C. Experimental Results

Fig. C.3: Real-world detection examples using the SegLink-DN-FL model continued
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Fig. C.4: Recognition examples CRNN-GRU model on SynthText validation sub-
set; from top to bottom: input image, sequence classification, ground truth (GT),
recognized text (RT) and normalized edit distance.
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C. Experimental Results

Leen

and

clip

30,

the

balls

DOwn

the

hit
for

(you

(and

Who

not

the

may

last

you
r

that

data

tae

FBI

the

thatand

The

be

grant,

areas

me
de
fec
t

bati
le

entitled

prp
mis

ed

Law

that

pu
bli
c

the

to

the

and

one

wr
an
y

the

tot

»a
oh
s

pay

1st

the

the

the

IBD

me

Phiil
was

Western.

they

ve

some

very

but

been

fores

for

per

This

thin
k

block

rule

Black

back.

Tom

>you

Yup!

Fig. C.5: End-to-End SegLink-DN-FL + CRNN-GRU recognition examples on Syn-
thText validation subset

132



De
ll

wo

cca
sss
e

c

sen
e

tni

De
l

www.agentec.de

AgenTec

NIMM

welFAl7

GRE 1zEM.Os

te

Faico
gded

Mich!

ewuestest

ZwEITEDAS

Sakral

Let’s

thendesign
AUSZEIt

about-Segs

suesigetd te
t

LAuFt ’URREAL

UgT

DIR kreativ?!

alkEUMELN

veb.

<style>

reoee

tee
Lufth

ansa
tot

1erIII

Tas
che

ntic
her

Fee
ling

IPA

Fraunhofer

Hiwi-Raun

Roboter

Myo-Robotics

undAssistenzsysteed

Gruppe323

drag&.bot

E2.06

cAptaiNs

erdbeere

Tea

Erdbeer-Himbeerget
Frichtetee,aromat.enu

himbeere

Hans-JurgenWarnecke

SeRIENPROD
UKtIONO

im- Schiffbau

und

Die

eins

FineMethodezur-Produktienu

jeizt

schiffen

Fig. C.6: End-to-End SegLink-DN-FL + CRNN-GRU recognition examples on real-
world images

133


	Introduction
	Artificial Neural Networks
	Basic Framework
	Training
	Initialization
	Batch Size
	Update Rules
	Generalization and Overfitting
	Stopping Criterion
	Regularization

	Feed-Forward Layer
	Fully-connected
	Nonlinear Activation
	Convolutional
	Pooling
	Softmax
	Dropout
	Batch Normalization
	Skip Connections

	Recurrent Layer
	RNN
	LSTM
	GRU
	Bidirectional RNN

	Loss Functions
	L2 Loss
	L1 Loss
	Smooth L1 Loss
	Hinge Loss
	Cross Entropy Loss
	Focal Loss
	CTC Loss
	Multi-Task Loss

	Network Architectures
	Transfer Learning
	Interpretability
	Deep Learning Frameworks

	Object Detection
	Terminology
	Datasets for Object Detection
	Evaluation Metrics
	CNN based Object Detectors
	OverFeat
	R-CNN
	Fast R-CNN
	Faster R-CNN
	Mask R-CNN
	R-FCN
	SSD
	YOLO


	ANN-based Text Spotting
	Datasets for Text Detection and Recognition
	Text Detection
	Region Proposal-based
	Single Shot Detector-based
	Segmentation-based

	Text Recognition
	Sequence-based Recognition Methods
	Rectification Methods
	Metrics for Text Recognition

	End-to-End trainable Text Recognition

	Implementation
	Design Decisions
	Detection
	Recognition

	Experiments
	SegLink
	SegLink with DenseNet Backbone
	SegLink with DenseNet Backbone and Focal Loss
	CRNN with GRU
	End-To-End Recognition

	Conclusion and Outlook
	Dataset Examples
	SegLink Illustrations
	Experimental Results

